-
Notifications
You must be signed in to change notification settings - Fork 236
/
Copy pathFStar.Math.Lemmas.fsti
407 lines (286 loc) · 14 KB
/
FStar.Math.Lemmas.fsti
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
(*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
val lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k)
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
(* Zero is neutral for addition *)
val add_zero_left_is_same (n : int) : Lemma(0 + n = n)
val add_zero_right_is_same (n : int) : Lemma(n + 0 = n)
(* One is neutral for multiplication *)
val mul_one_left_is_same (n : int) : Lemma(1 * n = n)
val mul_one_right_is_same (n : int) : Lemma(n * 1 = n)
(* Multiplying by zero gives zero *)
val mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0)
val mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0)
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
val lemma_div_mod_plus (a:int) (k:int) (n:pos)
: Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n)
val add_div_mod_1 (a:int) (n:pos)
: Lemma ((a + n) % n == a % n /\
(a + n) / n == a / n + 1)
val sub_div_mod_1 (a:int) (n:pos)
: Lemma ((a - n) % n == a % n /\
(a - n) / n == a / n - 1)
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
val lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0)
val lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0)
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 )
val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c )
val pow2_modulo_division_lemma_1: a:nat -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) / pow2 b = (a / pow2 b) % (pow2 (c - b)) )
val pow2_modulo_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) / pow2 b = 0 )
val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b )
val pow2_modulo_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 c )
val modulo_add : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires (b % p = c % p))
(ensures ((a + b) % p = (a + c) % p))
val lemma_mod_twice : a:int -> p:pos -> Lemma ((a % p) % p == a % p)
val modulo_sub : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires ((a + b) % p = (a + c) % p))
(ensures (b % p = c % p))
val mod_add_both (a:int) (b:int) (x:int) (n:pos) : Lemma
(requires a % n == b % n)
(ensures (a + x) % n == (b + x) % n)
val lemma_mod_plus_injective (n:pos) (a:int) (b:nat) (c:nat) : Lemma
(requires b < n /\ c < n /\ (a + b) % n = (a + c) % n)
(ensures b = c)
(* Another characterization of the modulo *)
val modulo_sub_lemma (a : int) (b : nat) (c : pos) :
Lemma
(requires (b < c /\ (a - b) % c = 0))
(ensures (b = a % c))