-
Notifications
You must be signed in to change notification settings - Fork 236
/
Copy pathFStar.Math.Euclid.fst
277 lines (236 loc) · 7.57 KB
/
FStar.Math.Euclid.fst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
module FStar.Math.Euclid
open FStar.Mul
open FStar.Math.Lemmas
///
/// Auxiliary lemmas
///
val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1)
let eq_mult_left a b = ()
val eq_mult_one (a b:int) : Lemma
(requires a * b = 1)
(ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1))
let eq_mult_one a b = ()
val opp_idempotent (a:int) : Lemma (-(-a) == a)
let opp_idempotent a = ()
val add_sub_l (a b:int) : Lemma (a - b + b = a)
let add_sub_l a b = ()
val add_sub_r (a b:int) : Lemma (a + b - b = a)
let add_sub_r a b = ()
///
/// Divides relation
///
let divides_reflexive a =
Classical.exists_intro (fun q -> a = q * a) 1
let divides_transitive a b c =
eliminate exists q1. b == q1 * a
returns a `divides` c
with _pf.
eliminate exists q2. c == q2 * b
returns _
with _pf2.
introduce exists q. c == q * a
with (q1 * q2)
and ()
let divide_antisym a b =
if a <> 0 then
Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a))
(fun q1 ->
Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b))
(fun q2 ->
assert (b = q1 * a);
assert (a = q2 * b);
assert (b = q1 * (q2 * b));
paren_mul_right q1 q2 b;
eq_mult_left b (q1 * q2);
eq_mult_one q1 q2))
let divides_0 a =
Classical.exists_intro (fun q -> 0 = q * a) 0
let divides_1 a = ()
let divides_minus a b =
Classical.exists_elim (a `divides` (-b))
(Squash.get_proof (a `divides` b))
(fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q))
let divides_opp a b =
Classical.exists_elim ((-a) `divides` b)
(Squash.get_proof (a `divides` b))
(fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q))
let divides_plus a b d =
Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d))
(fun q1 ->
Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d))
(fun q2 ->
assert (a + b = q1 * d + q2 * d);
distributivity_add_left q1 q2 d;
Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2)))
let divides_sub a b d =
Classical.forall_intro_2 (Classical.move_requires_2 divides_minus);
divides_plus a (-b) d
let divides_mult_right a b d =
Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b))
(fun q ->
paren_mul_right a q d;
Classical.exists_intro (fun r -> a * b = r * d) (a * q))
///
/// GCD
///
let mod_divides a b =
Classical.exists_intro (fun q -> a = q * b) (a / b)
let divides_mod a b =
Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a))
(fun q -> cancel_mul_div q b)
let is_gcd_unique a b c d =
divide_antisym c d
let is_gcd_reflexive a = ()
let is_gcd_symmetric a b d = ()
let is_gcd_0 a = ()
let is_gcd_1 a = ()
let is_gcd_minus a b d =
Classical.forall_intro_2 (Classical.move_requires_2 divides_minus);
opp_idempotent b
let is_gcd_opp a b d =
Classical.forall_intro_2 (Classical.move_requires_2 divides_minus);
divides_opp d a;
divides_opp d b
let is_gcd_plus a b q d =
add_sub_r b (q * a);
Classical.forall_intro_3 (Classical.move_requires_3 divides_plus);
Classical.forall_intro_3 (Classical.move_requires_3 divides_mult_right);
Classical.forall_intro_3 (Classical.move_requires_3 divides_sub)
///
/// Extended Euclidean algorithm
///
val is_gcd_for_euclid (a b q d:int) : Lemma
(requires is_gcd b (a - q * b) d)
(ensures is_gcd a b d)
let is_gcd_for_euclid a b q d =
add_sub_l a (q * b);
is_gcd_plus b (a - q * b) q d
let lemma_div_mod' (u : int) (v : nonzero)
: squash (u - (u / v) * v = u % v)
= lemma_div_mod u v
val egcd (a b u1 u2 u3 v1 v2 v3:int) : Pure (int & int & int)
(requires v3 >= 0 /\
u1 * a + u2 * b = u3 /\
v1 * a + v2 * b = v3 /\
(forall d. is_gcd u3 v3 d ==> is_gcd a b d))
(ensures (fun (u, v, d) -> u * a + v * b = d /\ is_gcd a b d))
(decreases v3)
let rec egcd a b u1 u2 u3 v1 v2 v3 =
if v3 = 0 then
begin
divides_0 u3;
(u1, u2, u3)
end
else
begin
let q = u3 / v3 in
euclidean_division_definition u3 v3;
assert (u3 - q * v3 = (q * v3 + u3 % v3) - q * v3);
assert (q * v3 - q * v3 = 0);
swap_add_plus_minus (q * v3) (u3 % v3) (q * v3);
calc (==) {
(u1 - q * v1) * a + (u2 - q * v2) * b;
== { _ by (FStar.Tactics.Canon.canon()) }
(u1 * a + u2 * b) - q * (v1 * a + v2 * b);
== { }
u3 - q * v3;
== { lemma_div_mod' u3 v3 }
u3 % v3;
};
let u1, v1 = v1, u1 - q * v1 in
let u2, v2 = v2, u2 - q * v2 in
let u3' = u3 in
let v3' = v3 in
let u3, v3 = v3, u3 - q * v3 in
(* proving the implication in the precondition *)
introduce forall d. is_gcd v3' (u3' - q * v3') d ==> is_gcd u3' v3' d with
introduce _ ==> _ with _.
is_gcd_for_euclid u3' v3' q d;
let r = egcd a b u1 u2 u3 v1 v2 v3 in
r
end
let euclid_gcd a b =
if b >= 0 then
egcd a b 1 0 a 0 1 b
else (
introduce forall d. is_gcd a (-b) d ==> is_gcd a b d
with introduce _ ==> _
with _pf.
(is_gcd_minus a b d;
is_gcd_symmetric b a d);
let res = egcd a b 1 0 a 0 (-1) (-b) in
let _, _, d = res in
assert (is_gcd a b d);
res
)
val is_gcd_prime_aux (p:int) (a:pos{a < p}) (d:int) : Lemma
(requires is_prime p /\ d `divides` p /\ d `divides` a)
(ensures d = 1 \/ d = -1)
let is_gcd_prime_aux p a d = ()
val is_gcd_prime (p:int{is_prime p}) (a:pos{a < p}) : Lemma (is_gcd p a 1)
let is_gcd_prime p a =
Classical.forall_intro_2 (Classical.move_requires_2 divides_minus);
Classical.forall_intro (Classical.move_requires (is_gcd_prime_aux p a));
assert (forall x. x `divides` p /\ x `divides` a ==> x = 1 \/ x = -1 /\ x `divides` 1)
let bezout_prime p a =
let r, s, d = euclid_gcd p a in
assert (r * p + s * a = d);
assert (is_gcd p a d);
is_gcd_prime p a;
is_gcd_unique p a 1 d;
assert (d = 1 \/ d = -1);
assert ((-r) * p + (-s) * a == -(r * p + s * a)) by (FStar.Tactics.Canon.canon());
if d = 1 then r, s else -r, -s
let euclid n a b r s =
let open FStar.Math.Lemmas in
calc (==) {
b % n;
== { distributivity_add_left (r * n) (s * a) b }
(r * n * b + s * a * b) % n;
== { paren_mul_right s a b }
(r * n * b + s * (a * b)) % n;
== { modulo_distributivity (r * n * b) (s * (a * b)) n }
((r * n * b) % n + s * (a * b) % n) % n;
== { lemma_mod_mul_distr_r s (a * b) n }
((r * n * b) % n + s * ((a * b) % n) % n) % n;
== { assert (a * b % n = 0) }
((r * n * b) % n + s * 0 % n) % n;
== { assert (s * 0 == 0) }
((r * n * b) % n + 0 % n) % n;
== { modulo_lemma 0 n }
((r * n * b) % n) % n;
== { lemma_mod_twice (r * n * b) n }
(r * n * b) % n;
== { _ by (FStar.Tactics.Canon.canon ()) }
(n * (r * b)) % n;
== { lemma_mod_mul_distr_l n (r * b) n}
n % n * (r * b) % n;
== { assert (n % n = 0) }
(0 * (r * b)) % n;
== { assert (0 * (r * b) == 0) }
0 % n;
== { small_mod 0 n }
0;
}
let euclid_prime p a b =
let ra, sa, da = euclid_gcd p a in
let rb, sb, db = euclid_gcd p b in
assert (is_gcd p a da);
assert (is_gcd p b db);
assert (da `divides` p);
assert (da = 1 \/ da = -1 \/ da = p \/ da = -p);
if da = 1 then
euclid p a b ra sa
else if da = -1 then
begin
assert ((-ra) * p + (-sa) * a == -(ra * p + sa * a)) by (FStar.Tactics.Canon.canon());
euclid p a b (-ra) (-sa)
end
else if da = p then
divides_mod a p
else
begin
opp_idempotent p;
divides_opp (-p) a;
divides_mod a p
end