-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathndimarray.py
183 lines (137 loc) · 5.16 KB
/
ndimarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#Translates indexes between a singular integer value and a tuple representing an index into a multi-dimensional array
class IndexTranslator(object):
def __init__(self, dims):
self._dims = dims
self._multipliers = [1]
multiplier = 1
for mi in range(1,len(dims)):
multiplier = multiplier * self._dims[mi-1]
self._multipliers.append(multiplier)
#Returns the singular index based on a multi-dimensional index tuple
def from_indexes(self, *indexes):
acc = 0
for i in range(len(self._dims)):
if indexes[i] >= self._dims[i]:
raise IndexError("Index out of bounds, check dims")
index = indexes[i]
acc += index*self._multipliers[i]
return acc
#Returns a multi-dimensional index tuple from a singular index
def to_indexes(self, i):
indexes = []
acc = 0
for t in range(len(self._dims)-1):
r = (i-acc)%self._multipliers[t+1]
acc += r
indexes.append(r/self._multipliers[t])
indexes.append((i-acc)/self._multipliers[-1])
return indexes
#Returns the highest integer index that can be generated by this translator
def max(self):
acc = 1
for t in range(len(self._dims)):
d = self._dims[t]
acc = acc * d
return acc
#Container object implementing a run-time defined N-dimensional array
class NDimArray(object):
def __init__(self, dims, items=[]):
self._it = IndexTranslator(dims)
self._data = [None for i in range(self._it.max())]
for item in items:
self.add(item)
def add(self, item):
indexes = item[:-1]
value = item[-1]
i = self._it.from_indexes(*indexes)
self._data[i] = value
def __getitem__(self, indexes):
if isinstance(indexes, list) or isinstance(indexes, tuple):
if len(indexes) != len(self._it._dims):
raise KeyError(indexes)
i = self._it.from_indexes(*indexes)
return self._data[i]
else:
#Indexes is an integer value and we look up the row
return self._data[indexes]
def reduce(self, target_indexes):
subset = []
for i, value in enumerate(self._data):
if value is None:
continue
indexes = self._it.to_indexes(i)
match = True
new_indexes = []
for j in range(len(indexes)):
if target_indexes[j] is None:
new_indexes.append(indexes[j])
elif target_indexes[j] != indexes[j]:
match = False
if match:
item = new_indexes
item.append(value)
subset.append(item)
new_dim = []
for j in range(len(target_indexes)):
if target_indexes[j] is None:
new_dim.append(self._it._dims[j])
return self.__class__(new_dim, items=subset)
def __repr__(self):
o = ""
for i in range(len(self._data)):
o += str(i) + " " + str(self._data[i]) + "\n"
return o
def get_2d_array(self, fill=None, filter_=None):
assert len(self._it._dims) == 2, "Cannot return 2d array for %sd structure, reduce first"%len(self._it._dims)
array = []
for x in range(self._it._dims[0]):
t = []
for y in range(self._it._dims[1]):
value = self[x,y]
if value is None:
t.append(fill)
else:
if filter_ is not None:
value = filter_(value)
t.append(value)
array.append(t)
return array
def get_labels(self):
return self._labels
def get_valid_count(self):
count = 0
for v in SequentialIterator(self):
if v is not None:
count += 1
return count
def __len__(self):
return self._it.max()
class LabeledNDimArray(NDimArray):
def __init__(self, dims, items, labels = [], auto_populate_labels=False):
super(LabeledNDimArray, self).__init__(dims, items)
if auto_populate_labels:
for item in items:
if item is not None:
labels = item[-1].characteristics.keys()
break
self._labels = labels
def reduce(self, target_indexes):
new_array = super(LabeledNDimArray, self).reduce(target_indexes)
new_labels = []
for j in range(len(target_indexes)):
if target_indexes[j] is None:
new_labels.append(self._labels[j])
new_array._labels = new_labels
return new_array
class SequentialIterator(object):
def __init__(self, ndimarray):
self._array = ndimarray
self._current_index = 0
def __iter__(self):
self._current_index = 0
return self
def next(self):
if self._current_index+1 >= len(self._array):
raise StopIteration
self._current_index += 1
return self._array[self._current_index]