layout | title | displayTitle |
---|---|---|
global |
Frequent Pattern Mining - MLlib |
<a href="mllib-guide.html">MLlib</a> - Frequent Pattern Mining |
Mining frequent items, itemsets, subsequences, or other substructures is usually among the first steps to analyze a large-scale dataset, which has been an active research topic in data mining for years. We refer users to Wikipedia's association rule learning for more information. MLlib provides a parallel implementation of FP-growth, a popular algorithm to mining frequent itemsets.
The FP-growth algorithm is described in the paper Han et al., Mining frequent patterns without candidate generation, where "FP" stands for frequent pattern. Given a dataset of transactions, the first step of FP-growth is to calculate item frequencies and identify frequent items. Different from Apriori-like algorithms designed for the same purpose, the second step of FP-growth uses a suffix tree (FP-tree) structure to encode transactions without generating candidate sets explicitly, which are usually expensive to generate. After the second step, the frequent itemsets can be extracted from the FP-tree. In MLlib, we implemented a parallel version of FP-growth called PFP, as described in Li et al., PFP: Parallel FP-growth for query recommendation. PFP distributes the work of growing FP-trees based on the suffices of transactions, and hence more scalable than a single-machine implementation. We refer users to the papers for more details.
MLlib's FP-growth implementation takes the following (hyper-)parameters:
minSupport
: the minimum support for an itemset to be identified as frequent. For example, if an item appears 3 out of 5 transactions, it has a support of 3/5=0.6.numPartitions
: the number of partitions used to distribute the work.
Examples
FPGrowth
implements the
FP-growth algorithm.
It take a RDD
of transactions, where each transaction is an Array
of items of a generic type.
Calling FPGrowth.run
with transactions returns an
FPGrowthModel
that stores the frequent itemsets with their frequencies. The following
example illustrates how to mine frequent itemsets and association rules
(see Association
Rules for
details) from transactions
.
{% highlight scala %} import org.apache.spark.rdd.RDD import org.apache.spark.mllib.fpm.FPGrowth
val data = sc.textFile("data/mllib/sample_fpgrowth.txt")
val transactions: RDD[Array[String]] = data.map(s => s.trim.split(' '))
val fpg = new FPGrowth() .setMinSupport(0.2) .setNumPartitions(10) val model = fpg.run(transactions)
model.freqItemsets.collect().foreach { itemset => println(itemset.items.mkString("[", ",", "]") + ", " + itemset.freq) }
val minConfidence = 0.8 model.generateAssociationRules(minConfidence).collect().foreach { rule => println( rule.antecedent.mkString("[", ",", "]") + " => " + rule.consequent .mkString("[", ",", "]") + ", " + rule.confidence) } {% endhighlight %}
FPGrowth
implements the
FP-growth algorithm.
It take an JavaRDD
of transactions, where each transaction is an Iterable
of items of a generic type.
Calling FPGrowth.run
with transactions returns an
FPGrowthModel
that stores the frequent itemsets with their frequencies. The following
example illustrates how to mine frequent itemsets and association rules
(see Association
Rules for
details) from transactions
.
{% highlight java %} import java.util.Arrays; import java.util.List;
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.fpm.AssociationRules; import org.apache.spark.mllib.fpm.FPGrowth; import org.apache.spark.mllib.fpm.FPGrowthModel;
SparkConf conf = new SparkConf().setAppName("FP-growth Example"); JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD data = sc.textFile("data/mllib/sample_fpgrowth.txt");
JavaRDD<List> transactions = data.map( new Function<String, List>() { public List call(String line) { String[] parts = line.split(" "); return Arrays.asList(parts); } } );
FPGrowth fpg = new FPGrowth() .setMinSupport(0.2) .setNumPartitions(10); FPGrowthModel model = fpg.run(transactions);
for (FPGrowth.FreqItemset itemset: model.freqItemsets().toJavaRDD().collect()) { System.out.println("[" + itemset.javaItems() + "], " + itemset.freq()); }
double minConfidence = 0.8; for (AssociationRules.Rule rule : model.generateAssociationRules(minConfidence).toJavaRDD().collect()) { System.out.println( rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence()); } {% endhighlight %}
FPGrowth
implements the
FP-growth algorithm.
It take an RDD
of transactions, where each transaction is an List
of items of a generic type.
Calling FPGrowth.train
with transactions returns an
FPGrowthModel
that stores the frequent itemsets with their frequencies.
{% highlight python %} from pyspark.mllib.fpm import FPGrowth
data = sc.textFile("data/mllib/sample_fpgrowth.txt")
transactions = data.map(lambda line: line.strip().split(' '))
model = FPGrowth.train(transactions, minSupport=0.2, numPartitions=10)
result = model.freqItemsets().collect() for fi in result: print(fi) {% endhighlight %}
{% highlight scala %} import org.apache.spark.rdd.RDD import org.apache.spark.mllib.fpm.AssociationRules import org.apache.spark.mllib.fpm.FPGrowth.FreqItemset
val freqItemsets = sc.parallelize(Seq( new FreqItemset(Array("a"), 15L), new FreqItemset(Array("b"), 35L), new FreqItemset(Array("a", "b"), 12L) ));
val ar = new AssociationRules() .setMinConfidence(0.8) val results = ar.run(freqItemsets)
results.collect().foreach { rule => println("[" + rule.antecedent.mkString(",") + "=>" + rule.consequent.mkString(",") + "]," + rule.confidence) } {% endhighlight %}
{% highlight java %} import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.fpm.AssociationRules; import org.apache.spark.mllib.fpm.FPGrowth.FreqItemset;
JavaRDD<FPGrowth.FreqItemset> freqItemsets = sc.parallelize(Arrays.asList( new FreqItemset(new String[] {"a"}, 15L), new FreqItemset(new String[] {"b"}, 35L), new FreqItemset(new String[] {"a", "b"}, 12L) ));
AssociationRules arules = new AssociationRules() .setMinConfidence(0.8); JavaRDD<AssociationRules.Rule> results = arules.run(freqItemsets);
for (AssociationRules.Rule rule: results.collect()) { System.out.println( rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence()); } {% endhighlight %}
PrefixSpan is a sequential pattern mining algorithm described in Pei et al., Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. We refer the reader to the referenced paper for formalizing the sequential pattern mining problem.
MLlib's PrefixSpan implementation takes the following parameters:
minSupport
: the minimum support required to be considered a frequent sequential pattern.maxPatternLength
: the maximum length of a frequent sequential pattern. Any frequent pattern exceeding this length will not be included in the results.maxLocalProjDBSize
: the maximum number of items allowed in a prefix-projected database before local iterative processing of the projected databse begins. This parameter should be tuned with respect to the size of your executors.
Examples
The following example illustrates PrefixSpan running on the sequences (using same notation as Pei et al):
<(12)3>
<1(32)(12)>
<(12)5>
<6>
PrefixSpan
implements the
PrefixSpan algorithm.
Calling PrefixSpan.run
returns a
PrefixSpanModel
that stores the frequent sequences with their frequencies.
{% highlight scala %} import org.apache.spark.mllib.fpm.PrefixSpan
val sequences = sc.parallelize(Seq( Array(Array(1, 2), Array(3)), Array(Array(1), Array(3, 2), Array(1, 2)), Array(Array(1, 2), Array(5)), Array(Array(6)) ), 2).cache() val prefixSpan = new PrefixSpan() .setMinSupport(0.5) .setMaxPatternLength(5) val model = prefixSpan.run(sequences) model.freqSequences.collect().foreach { freqSequence => println( freqSequence.sequence.map(_.mkString("[", ", ", "]")).mkString("[", ", ", "]") + ", " + freqSequence.freq) } {% endhighlight %}
PrefixSpan
implements the
PrefixSpan algorithm.
Calling PrefixSpan.run
returns a
PrefixSpanModel
that stores the frequent sequences with their frequencies.
{% highlight java %} import java.util.Arrays; import java.util.List;
import org.apache.spark.mllib.fpm.PrefixSpan; import org.apache.spark.mllib.fpm.PrefixSpanModel;
JavaRDD<List<List>> sequences = sc.parallelize(Arrays.asList( Arrays.asList(Arrays.asList(1, 2), Arrays.asList(3)), Arrays.asList(Arrays.asList(1), Arrays.asList(3, 2), Arrays.asList(1, 2)), Arrays.asList(Arrays.asList(1, 2), Arrays.asList(5)), Arrays.asList(Arrays.asList(6)) ), 2); PrefixSpan prefixSpan = new PrefixSpan() .setMinSupport(0.5) .setMaxPatternLength(5); PrefixSpanModel model = prefixSpan.run(sequences); for (PrefixSpan.FreqSequence freqSeq: model.freqSequences().toJavaRDD().collect()) { System.out.println(freqSeq.javaSequence() + ", " + freqSeq.freq()); } {% endhighlight %}