forked from Stability-AI/stable-audio-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
166 lines (134 loc) · 6.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import json
import os
import pytorch_lightning as pl
from prefigure.prefigure import get_all_args, push_wandb_config
from stable_audio_tools.data.dataset import create_dataloader_from_config, fast_scandir
from stable_audio_tools.models import create_model_from_config
from stable_audio_tools.models.utils import load_ckpt_state_dict, remove_weight_norm_from_model
from stable_audio_tools.training import create_training_wrapper_from_config, create_demo_callback_from_config
from stable_audio_tools.training.utils import copy_state_dict
class ExceptionCallback(pl.Callback):
def on_exception(self, trainer, module, err):
print(f'{type(err).__name__}: {err}')
class ModelConfigEmbedderCallback(pl.Callback):
def __init__(self, model_config):
self.model_config = model_config
def on_save_checkpoint(self, trainer, pl_module, checkpoint):
checkpoint["model_config"] = self.model_config
def main():
torch.multiprocessing.set_sharing_strategy('file_system')
args = get_all_args()
seed = args.seed
# Set a different seed for each process if using SLURM
if os.environ.get("SLURM_PROCID") is not None:
seed += int(os.environ.get("SLURM_PROCID"))
pl.seed_everything(seed, workers=True)
#Get JSON config from args.model_config
with open(args.model_config) as f:
model_config = json.load(f)
with open(args.dataset_config) as f:
dataset_config = json.load(f)
train_dl = create_dataloader_from_config(
dataset_config,
batch_size=args.batch_size,
num_workers=args.num_workers,
sample_rate=model_config["sample_rate"],
sample_size=model_config["sample_size"],
audio_channels=model_config.get("audio_channels", 2),
)
val_dl = None
val_dataset_config = None
if args.val_dataset_config:
with open(args.val_dataset_config) as f:
val_dataset_config = json.load(f)
val_dl = create_dataloader_from_config(
val_dataset_config,
batch_size=args.batch_size,
num_workers=args.num_workers,
sample_rate=model_config["sample_rate"],
sample_size=model_config["sample_size"],
audio_channels=model_config.get("audio_channels", 2),
shuffle=False
)
model = create_model_from_config(model_config)
if args.pretrained_ckpt_path:
copy_state_dict(model, load_ckpt_state_dict(args.pretrained_ckpt_path))
if args.remove_pretransform_weight_norm == "pre_load":
remove_weight_norm_from_model(model.pretransform)
if args.pretransform_ckpt_path:
model.pretransform.load_state_dict(load_ckpt_state_dict(args.pretransform_ckpt_path))
# Remove weight_norm from the pretransform if specified
if args.remove_pretransform_weight_norm == "post_load":
remove_weight_norm_from_model(model.pretransform)
training_wrapper = create_training_wrapper_from_config(model_config, model)
exc_callback = ExceptionCallback()
if args.logger == 'wandb':
logger = pl.loggers.WandbLogger(project=args.name)
logger.watch(training_wrapper)
if args.save_dir and isinstance(logger.experiment.id, str):
checkpoint_dir = os.path.join(args.save_dir, logger.experiment.project, logger.experiment.id, "checkpoints")
else:
checkpoint_dir = None
elif args.logger == 'comet':
logger = pl.loggers.CometLogger(project_name=args.name)
checkpoint_dir = args.save_dir if args.save_dir else None
else:
logger = None
checkpoint_dir = args.save_dir if args.save_dir else None
ckpt_callback = pl.callbacks.ModelCheckpoint(every_n_train_steps=args.checkpoint_every, dirpath=checkpoint_dir, save_top_k=-1)
save_model_config_callback = ModelConfigEmbedderCallback(model_config)
if args.val_dataset_config:
demo_callback = create_demo_callback_from_config(model_config, demo_dl=val_dl)
else:
demo_callback = create_demo_callback_from_config(model_config, demo_dl=train_dl)
#Combine args and config dicts
args_dict = vars(args)
args_dict.update({"model_config": model_config})
args_dict.update({"dataset_config": dataset_config})
args_dict.update({"val_dataset_config": val_dataset_config})
if args.logger == 'wandb':
push_wandb_config(logger, args_dict)
elif args.logger == 'comet':
logger.log_hyperparams(args_dict)
#Set multi-GPU strategy if specified
if args.strategy:
if args.strategy == "deepspeed":
from pytorch_lightning.strategies import DeepSpeedStrategy
strategy = DeepSpeedStrategy(stage=2,
contiguous_gradients=True,
overlap_comm=True,
reduce_scatter=True,
reduce_bucket_size=5e8,
allgather_bucket_size=5e8,
load_full_weights=True)
else:
strategy = args.strategy
else:
strategy = 'ddp_find_unused_parameters_true' if args.num_gpus > 1 else "auto"
val_args = {}
if args.val_every > 0:
val_args.update({
"check_val_every_n_epoch": None,
"val_check_interval": args.val_every,
})
trainer = pl.Trainer(
devices="auto",
accelerator="gpu",
num_nodes = args.num_nodes,
strategy=strategy,
precision=args.precision,
accumulate_grad_batches=args.accum_batches,
callbacks=[ckpt_callback, demo_callback, exc_callback, save_model_config_callback],
logger=logger,
log_every_n_steps=1,
max_epochs=10000000,
default_root_dir=args.save_dir,
gradient_clip_val=args.gradient_clip_val,
reload_dataloaders_every_n_epochs = 0,
num_sanity_val_steps=0, # If you need to debug validation, change this line
**val_args
)
trainer.fit(training_wrapper, train_dl, val_dl, ckpt_path=args.ckpt_path if args.ckpt_path else None)
if __name__ == '__main__':
main()