|
| 1 | +using Lux, |
| 2 | + Random, |
| 3 | + Reactant, |
| 4 | + Enzyme, |
| 5 | + Zygote, |
| 6 | + BenchmarkTools, |
| 7 | + LuxCUDA, |
| 8 | + DataFrames, |
| 9 | + OrderedCollections, |
| 10 | + CSV, |
| 11 | + Comonicon |
| 12 | + |
| 13 | +struct HamiltonianNN{E,M} <: AbstractLuxWrapperLayer{:model} |
| 14 | + model::M |
| 15 | + |
| 16 | + HamiltonianNN{E}(model::M) where {E,M} = new{E,M}(model) |
| 17 | +end |
| 18 | + |
| 19 | +function (hnn::HamiltonianNN{false})(x::AbstractArray, ps, st) |
| 20 | + model = StatefulLuxLayer{true}(hnn.model, ps, st) |
| 21 | + ∂x = only(Zygote.gradient(sum ∘ model, x)) |
| 22 | + n = size(x, ndims(x) - 1) ÷ 2 |
| 23 | + y = cat( |
| 24 | + selectdim(∂x, ndims(∂x) - 1, (n + 1):(2n)), |
| 25 | + selectdim(∂x, ndims(∂x) - 1, 1:n); |
| 26 | + dims=Val(ndims(∂x) - 1), |
| 27 | + ) |
| 28 | + return y, model.st |
| 29 | +end |
| 30 | + |
| 31 | +function (hnn::HamiltonianNN{true})(x::AbstractArray, ps, st) |
| 32 | + ∂x = similar(x) |
| 33 | + model = StatefulLuxLayer{true}(hnn.model, ps, st) |
| 34 | + Enzyme.autodiff(Reverse, Const(sum ∘ model), Duplicated(x, ∂x)) |
| 35 | + n = size(x, ndims(x) - 1) ÷ 2 |
| 36 | + y = cat( |
| 37 | + selectdim(∂x, ndims(∂x) - 1, (n + 1):(2n)), |
| 38 | + selectdim(∂x, ndims(∂x) - 1, 1:n); |
| 39 | + dims=Val(ndims(∂x) - 1), |
| 40 | + ) |
| 41 | + return y, model.st |
| 42 | +end |
| 43 | + |
| 44 | +function loss_fn(model, ps, st, x, y) |
| 45 | + pred, _ = model(x, ps, st) |
| 46 | + return MSELoss()(pred, y) |
| 47 | +end |
| 48 | + |
| 49 | +function ∇zygote_loss_fn(model, ps, st, x, y) |
| 50 | + _, dps, _, dx, _ = Zygote.gradient(loss_fn, model, ps, st, x, y) |
| 51 | + return dps, dx |
| 52 | +end |
| 53 | + |
| 54 | +function ∇enzyme_loss_fn(model, ps, st, x, y) |
| 55 | + _, dps, _, dx, _ = Enzyme.gradient( |
| 56 | + Reverse, loss_fn, Const(model), ps, Const(st), x, Const(y) |
| 57 | + ) |
| 58 | + return dps, dx |
| 59 | +end |
| 60 | + |
| 61 | +function reclaim_fn(backend, reactant) |
| 62 | + if backend == "gpu" && !reactant |
| 63 | + CUDA.reclaim() |
| 64 | + end |
| 65 | + GC.gc(true) |
| 66 | + return nothing |
| 67 | +end |
| 68 | + |
| 69 | +Comonicon.@main function main(; backend::String="gpu") |
| 70 | + @assert backend in ("cpu", "gpu") |
| 71 | + |
| 72 | + Reactant.set_default_backend(backend) |
| 73 | + filename = joinpath(@__DIR__, "results_$(backend).csv") |
| 74 | + |
| 75 | + @info "Using backend" backend |
| 76 | + |
| 77 | + cdev = cpu_device() |
| 78 | + gdev = backend == "gpu" ? gpu_device(; force=true) : cdev |
| 79 | + xdev = reactant_device(; force=true) |
| 80 | + |
| 81 | + df = DataFrame( |
| 82 | + OrderedDict( |
| 83 | + "Kind" => [], |
| 84 | + "Fwd Vanilla" => [], |
| 85 | + "Fwd Reactant" => [], |
| 86 | + "Fwd Reactant SpeedUp" => [], |
| 87 | + "Bwd Zygote" => [], |
| 88 | + "Bwd Reactant" => [], |
| 89 | + "Bwd Reactant SpeedUp" => [], |
| 90 | + ), |
| 91 | + ) |
| 92 | + |
| 93 | + mlp = Chain( |
| 94 | + Dense(32, 128, gelu), |
| 95 | + Dense(128, 128, gelu), |
| 96 | + Dense(128, 128, gelu), |
| 97 | + Dense(128, 128, gelu), |
| 98 | + Dense(128, 1), |
| 99 | + ) |
| 100 | + |
| 101 | + model_enz = HamiltonianNN{true}(mlp) |
| 102 | + model_zyg = HamiltonianNN{false}(mlp) |
| 103 | + |
| 104 | + ps, st = Lux.setup(Random.default_rng(), model_enz) |
| 105 | + |
| 106 | + x = randn(Float32, 32, 1024) |
| 107 | + y = randn(Float32, 32, 1024) |
| 108 | + |
| 109 | + x_gdev = gdev(x) |
| 110 | + y_gdev = gdev(y) |
| 111 | + x_xdev = xdev(x) |
| 112 | + y_xdev = xdev(y) |
| 113 | + |
| 114 | + ps_gdev, st_gdev = gdev((ps, st)) |
| 115 | + ps_xdev, st_xdev = xdev((ps, st)) |
| 116 | + |
| 117 | + @info "Compiling Forward Functions" |
| 118 | + lfn_compiled = @compile sync = true loss_fn(model_enz, ps_xdev, st_xdev, x_xdev, y_xdev) |
| 119 | + |
| 120 | + @info "Running Forward Benchmarks" |
| 121 | + |
| 122 | + t_gdev = @belapsed CUDA.@sync(loss_fn($model_zyg, $ps_gdev, $st_gdev, $x_gdev, $y_gdev)) setup = (reclaim_fn( |
| 123 | + $backend, false |
| 124 | + )) |
| 125 | + |
| 126 | + t_xdev = @belapsed $lfn_compiled($model_enz, $ps_xdev, $st_xdev, $x_xdev, $y_xdev) setup = (reclaim_fn( |
| 127 | + $backend, true |
| 128 | + )) |
| 129 | + |
| 130 | + @info "Forward Benchmarks" t_gdev t_xdev |
| 131 | + |
| 132 | + @info "Compiling Backward Functions" |
| 133 | + grad_fn_compiled = @compile sync = true ∇enzyme_loss_fn( |
| 134 | + model_enz, ps_xdev, st_xdev, x_xdev, y_xdev |
| 135 | + ) |
| 136 | + |
| 137 | + @info "Running Backward Benchmarks" |
| 138 | + |
| 139 | + t_rev_gdev = @belapsed CUDA.@sync( |
| 140 | + ∇zygote_loss_fn($model_zyg, $ps_gdev, $st_gdev, $x_gdev, $y_gdev) |
| 141 | + ) setup = (reclaim_fn($backend, false)) |
| 142 | + |
| 143 | + t_rev_xdev = @belapsed $grad_fn_compiled( |
| 144 | + $model_enz, $ps_xdev, $st_xdev, $x_xdev, $y_xdev |
| 145 | + ) setup = (reclaim_fn($backend, true)) |
| 146 | + |
| 147 | + @info "Backward Benchmarks" t_rev_gdev t_rev_xdev |
| 148 | + |
| 149 | + push!( |
| 150 | + df, |
| 151 | + [ |
| 152 | + "HNN", |
| 153 | + t_gdev, |
| 154 | + t_xdev, |
| 155 | + t_gdev / t_xdev, |
| 156 | + t_rev_gdev, |
| 157 | + t_rev_xdev, |
| 158 | + t_rev_gdev / t_rev_xdev, |
| 159 | + ], |
| 160 | + ) |
| 161 | + |
| 162 | + display(df) |
| 163 | + CSV.write(filename, df) |
| 164 | + |
| 165 | + @info "Results saved to $filename" |
| 166 | + return nothing |
| 167 | +end |
0 commit comments