-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathLinearAlgebra.jl
417 lines (368 loc) · 13.7 KB
/
LinearAlgebra.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
module TracedLinearAlgebra
using ..Reactant:
TracedRArray,
TracedRNumber,
AnyTracedRArray,
AnyTracedRMatrix,
AnyTracedRVector,
AnyTracedRVecOrMat,
unwrapped_eltype,
Ops,
MLIR
using ..TracedUtils: TracedUtils, get_mlir_data, materialize_traced_array, set_mlir_data!
using LinearAlgebra
# Various Wrapper Arrays defined in LinearAlgebra
function TracedUtils.materialize_traced_array(
x::Transpose{TracedRNumber{T},TracedRArray{T,N}}
) where {T,N}
px = parent(x)
A = ndims(px) == 1 ? reshape(px, :, 1) : px
return permutedims(A, (2, 1))
end
function TracedUtils.materialize_traced_array(
x::Adjoint{TracedRNumber{T},TracedRArray{T,N}}
) where {T,N}
return conj(materialize_traced_array(transpose(parent(x))))
end
function TracedUtils.materialize_traced_array(
x::Diagonal{TracedRNumber{T},TracedRArray{T,1}}
) where {T}
return diagm(parent(x))
end
function TracedUtils.materialize_traced_array(
x::Tridiagonal{TracedRNumber{T},TracedRArray{T,1}}
) where {T}
return diagm(-1 => x.dl, 0 => x.d, 1 => x.du)
end
for (AT, comp) in ((:LowerTriangular, "GE"), (:UpperTriangular, "LE"))
uAT = Symbol(:Unit, AT)
@eval begin
function TracedUtils.materialize_traced_array(
x::$(AT){TracedRNumber{T},TracedRArray{T,2}}
) where {T}
m, n = size(x)
row_idxs = Ops.iota(Int, [m, n]; iota_dimension=1)
col_idxs = Ops.iota(Int, [m, n]; iota_dimension=2)
indicator = Ops.compare(row_idxs, col_idxs; comparison_direction=$(comp))
return Ops.select(indicator, parent(x), zero(parent(x)))
end
function TracedUtils.materialize_traced_array(
x::$(uAT){TracedRNumber{T},TracedRArray{T,2}}
) where {T}
m, n = size(x)
row_idxs = Ops.iota(Int, [m, n]; iota_dimension=1)
col_idxs = Ops.iota(Int, [m, n]; iota_dimension=2)
nondiag_indicator = Ops.compare(row_idxs, col_idxs; comparison_direction="NE")
x = materialize_traced_array($(AT)(parent(x)))
return Ops.select(nondiag_indicator, x, one.(x))
end
end
end
function TracedUtils.materialize_traced_array(
x::Symmetric{TracedRNumber{T},TracedRArray{T,2}}
) where {T}
m, n = size(x)
row_idxs = Ops.iota(Int, [m, n]; iota_dimension=1)
col_idxs = Ops.iota(Int, [m, n]; iota_dimension=2)
if x.uplo == 'L'
indicator = Ops.compare(row_idxs, col_idxs; comparison_direction="GT")
x_lt = Ops.select(indicator, parent(x), zero(parent(x)))
x_ltd = materialize_traced_array(LowerTriangular(parent(x)))
return Ops.add(x_lt, Ops.transpose(x_ltd, [2, 1]))
else
indicator = Ops.compare(row_idxs, col_idxs; comparison_direction="LT")
x_ut = Ops.select(indicator, parent(x), zero(parent(x)))
x_utd = materialize_traced_array(UpperTriangular(parent(x)))
return Ops.add(Ops.transpose(x_utd, [2, 1]), x_ut)
end
end
function TracedUtils.set_mlir_data!(
x::Transpose{TracedRNumber{T},TracedRArray{T,N}}, data
) where {T,N}
tdata = TracedRArray{T}(data)
px = parent(x)
px.mlir_data = (
if ndims(px) == 1
Ops.reshape(tdata, length(tdata))
else
Ops.transpose(tdata, [2, 1])
end
).mlir_data
return x
end
function TracedUtils.set_mlir_data!(
x::Adjoint{TracedRNumber{T},TracedRArray{T,N}}, data
) where {T,N}
tdata = TracedRArray{T}(data)
px = parent(x)
transposed_data =
ndims(px) == 1 ? Ops.reshape(tdata, length(tdata)) : Ops.transpose(tdata, [2, 1])
px.mlir_data = (T <: Real ? transposed_data : Ops.conj(transposed_data)).mlir_data
return x
end
function TracedUtils.set_mlir_data!(
x::Diagonal{TracedRNumber{T},TracedRArray{T,1}}, data
) where {T}
parent(x).mlir_data = diag(TracedRArray{T}(data)).mlir_data
return x
end
for (AT, dcomp, ocomp) in (
(:LowerTriangular, "GE", "LT"),
(:UnitLowerTriangular, "GT", "LE"),
(:UpperTriangular, "LE", "GT"),
(:UnitUpperTriangular, "LT", "GE"),
)
@eval function TracedUtils.set_mlir_data!(
x::$(AT){TracedRNumber{T},TracedRArray{T,2}}, data
) where {T}
tdata = TracedRArray{T}(data)
z = zero(tdata)
m, n = size(x)
row_idxs = Ops.iota(Int, [m, n]; iota_dimension=1)
col_idxs = Ops.iota(Int, [m, n]; iota_dimension=2)
data_indicator = Ops.compare(row_idxs, col_idxs; comparison_direction=$(dcomp))
original_indicator = Ops.compare(row_idxs, col_idxs; comparison_direction=$(ocomp))
res = Ops.add(
Ops.select(data_indicator, tdata, z), Ops.select(original_indicator, x.data, z)
)
set_mlir_data!(x.data, res.mlir_data)
return x
end
end
function TracedUtils.set_mlir_data!(
x::Symmetric{TracedRNumber{T},TracedRArray{T,2}}, data
) where {T}
if x.uplo == 'L'
set_mlir_data!(LowerTriangular(parent(x)), data)
else
set_mlir_data!(UpperTriangular(parent(x)), data)
end
return x
end
function TracedUtils.set_mlir_data!(
x::Tridiagonal{TracedRNumber{T},TracedRArray{T,1}}, data
) where {T}
tdata = TracedRArray{T}(data)
set_mlir_data!(x.dl, diag(tdata, -1).mlir_data)
set_mlir_data!(x.d, diag(tdata, 0).mlir_data)
set_mlir_data!(x.du, diag(tdata, 1).mlir_data)
return x
end
# Core functions
function overloaded_mul!(
@nospecialize(C::TracedRArray{T,1}),
@nospecialize(A::AnyTracedRMatrix),
@nospecialize(B::AnyTracedRVector),
α::Number=true,
β::Number=false,
) where {T}
# TODO: The reshape operations are not getting optimized, we should directly call dot_general
rC = Ops.reshape(C, length(C), 1)
overloaded_mul!(rC, A, reshape(B, :, 1), α, β)
C.mlir_data = get_mlir_data(vec(rC))
return C
end
function overloaded_mul!(
@nospecialize(C::TracedRArray{T,2}),
@nospecialize(A::AnyTracedRMatrix),
@nospecialize(B::AnyTracedRVector),
α::Number=true,
β::Number=false,
) where {T}
overloaded_mul!(C, A, reshape(B, :, 1), α, β)
return C
end
function overloaded_mul!(
@nospecialize(C::TracedRArray{T,2} where {T}),
@nospecialize(A::AnyTracedRMatrix),
@nospecialize(B::AnyTracedRMatrix),
α::Number=true,
β::Number=false,
)
if size(C) != (size(A, 1), size(B, 2))
throw(
DimensionMismatch(
"C has size $(size(C)), A has size $(size(A)), B has size $(size(B))"
),
)
end
if size(A, 2) != size(B, 1)
throw(DimensionMismatch("A has size $(size(A)), B has size $(size(B))"))
end
T = unwrapped_eltype(C)
tmp = Ops.dot_general(
T.(materialize_traced_array(A)),
T.(materialize_traced_array(B));
contracting_dimensions=([2], [1]),
)
res = if iszero(β)
isone(α) ? tmp : Ops.multiply(tmp, TracedUtils.broadcast_to_size(T(α), size(C)))
else
α_res = Ops.multiply(tmp, TracedUtils.broadcast_to_size(T(α), size(C)))
β_C = Ops.multiply(C, TracedUtils.broadcast_to_size(T(β), size(C)))
Ops.add(α_res, β_C)
end
set_mlir_data!(C, get_mlir_data(res))
return C
end
function LinearAlgebra.triu!(@nospecialize(X::TracedRArray{T,2}), k::Integer) where {T}
iota_1 = Ops.iota(Int64, [size(X)...]; iota_dimension=1)
iota_2 = Ops.subtract(
Ops.iota(Int64, [size(X)...]; iota_dimension=2),
TracedUtils.broadcast_to_size(k, size(X)),
)
idxs = Ops.compare(iota_1, iota_2; comparison_direction="LE")
X.mlir_data = Ops.select(idxs, X, zero(X)).mlir_data
return X
end
function LinearAlgebra.tril!(@nospecialize(X::TracedRArray{T,2}), k::Integer) where {T}
iota_1 = Ops.iota(Int64, [size(X)...]; iota_dimension=1)
iota_2 = Ops.subtract(
Ops.iota(Int64, [size(X)...]; iota_dimension=2),
TracedUtils.broadcast_to_size(k, size(X)),
)
idxs = Ops.compare(iota_1, iota_2; comparison_direction="GE")
X.mlir_data = Ops.select(idxs, X, zero(X)).mlir_data
return X
end
# LinearAlgebra defines norm with some conditionals which cannot be traced directly
function LinearAlgebra.norm(x::TracedRArray{T,N}, p::Real=2) where {T,N}
isinf(p) && return maximum(abs, x)
return mapreduce(Base.Fix2(^, p), +, x)^(1 / p)
end
function LinearAlgebra.diag(x::AnyTracedRArray{T,2}, k::Integer=0) where {T}
y = materialize_traced_array(x)
rows, cols = size(y)
(start_row, start_col) = k ≥ 0 ? (0, k) : (-k, 0)
diag_length = min(rows - start_row, cols - start_col)
indices = stack((
start_row:(start_row + diag_length - 1), start_col:(start_col + diag_length - 1)
))
# XXX: creating an empty array causes
# terminate called after throwing an instance of 'xla::XlaRuntimeError'
# what(): UNKNOWN: <unknown>:0: error: 'tensor.empty' op unsupported op for export to XLA
# <unknown>:0: note: see current operation: %0 = "tensor.empty"() : () -> tensor<0xf64>
length(indices) ≤ 0 && return TracedUtils.promote_to(TracedRArray{T,1}, T[])
return Ops.gather_getindex(y, TracedUtils.promote_to(TracedRArray{Int,2}, indices))
end
function LinearAlgebra._diagm(
shape, kv::Pair{<:Integer,<:AnyTracedRArray{T,1}}...
) where {T}
m, n = LinearAlgebra.diagm_size(shape, kv...)
# For repeated indices we need to aggregate the values
kv_updated = Dict{Integer,AnyTracedRArray{T,1}}()
for (k, v) in kv
if haskey(kv_updated, k)
kv_updated[k] = kv_updated[k] + v
else
kv_updated[k] = v
end
end
scatter_indices = Matrix{Int64}[]
concat_inputs = MLIR.IR.Value[]
for (k, v) in pairs(kv_updated)
push!(scatter_indices, diagonal_indices_zero_indexed(m, n, k)[1:length(v), :])
push!(concat_inputs, get_mlir_data(v))
end
scatter_indices = Ops.constant(reduce(vcat, scatter_indices))
values = TracedRArray{T,1}(
(),
MLIR.IR.result(MLIR.Dialects.stablehlo.concatenate(concat_inputs; dimension=0), 1),
(size(scatter_indices, 1),),
)
return Ops.scatter_setindex(Ops.fill(zero(T), (m, n)), scatter_indices, values)
end
# Common Utilities
## The cartesian version doesn't exist in julia 1.10
function diagonal_indices_zero_indexed(m::Integer, n::Integer, k::Integer=0)
idx1, idx2 = 1 + max(0, -k), 1 + max(0, k)
L = max(0, k ≤ 0 ? min(m + k, n) : min(m, n - k))
indices = Matrix{Int}(undef, (L, 2))
for i in axes(indices, 1)
indices[i, 1] = idx1 + i - 2
indices[i, 2] = idx2 + i - 2
end
return indices
end
function LinearAlgebra.ldiv!(
B::Union{
AbstractArray{<:TracedRNumber{T},1},
AbstractArray{<:TracedRNumber{T},2},
AnyTracedRArray{T,1},
AnyTracedRArray{T,2},
},
D::Diagonal,
A::AbstractVecOrMat,
) where {T}
LinearAlgebra.require_one_based_indexing(A, B)
dd = D.diag
d = length(dd)
m, n = size(A, 1), size(A, 2)
m′, n′ = size(B, 1), size(B, 2)
m == d || throw(DimensionMismatch("right hand side has $m rows but D is $d by $d"))
(m, n) == (m′, n′) ||
throw(DimensionMismatch("expect output to be $m by $n, but got $m′ by $n′"))
B .= dd .\ A
# OG implementation below, we don't currently support the conditional throw exception
#j = findfirst(iszero, D.diag)
#isnothing(j) || throw(SingularException(j))
#@inbounds for j = 1:n, i = 1:m
# B[i, j] = dd[i] \ A[i, j]
#end
return B
end
# Kronecker Product
function LinearAlgebra.kron(
x::AnyTracedRVecOrMat{T1}, y::AnyTracedRVecOrMat{T2}
) where {T1,T2}
x = materialize_traced_array(x)
y = materialize_traced_array(y)
z = similar(x, Base.promote_op(*, T1, T2), LinearAlgebra._kronsize(x, y))
LinearAlgebra.kron!(z, x, y)
return z
end
function LinearAlgebra.kron(x::AnyTracedRVector{T1}, y::AnyTracedRVector{T2}) where {T1,T2}
x = materialize_traced_array(x)
y = materialize_traced_array(y)
z = similar(x, Base.promote_op(*, T1, T2), length(x) * length(y))
LinearAlgebra.kron!(z, x, y)
return z
end
function LinearAlgebra.kron!(C::AnyTracedRVector, A::AnyTracedRVector, B::AnyTracedRVector)
LinearAlgebra.kron!(
reshape(C, length(B), length(A)), reshape(A, 1, length(A)), reshape(B, length(B), 1)
)
return C
end
function LinearAlgebra._kron!(C::AnyTracedRMatrix, A::AnyTracedRMatrix, B::AnyTracedRMatrix)
A = materialize_traced_array(A)
B = materialize_traced_array(B)
final_shape = Int64[size(B, 1), size(A, 1), size(B, 2), size(A, 2)]
A = Ops.broadcast_in_dim(A, Int64[2, 4], final_shape)
B = Ops.broadcast_in_dim(B, Int64[1, 3], final_shape)
C_tmp = Ops.reshape(Ops.multiply(A, B), size(C)...)
set_mlir_data!(C, get_mlir_data(C_tmp))
return C
end
function LinearAlgebra._kron!(C::AnyTracedRMatrix, A::AnyTracedRVector, B::AnyTracedRMatrix)
LinearAlgebra._kron!(C, reshape(A, length(A), 1), B)
return C
end
function LinearAlgebra._kron!(C::AnyTracedRMatrix, A::AnyTracedRMatrix, B::AnyTracedRVector)
LinearAlgebra._kron!(C, A, reshape(B, length(B), 1))
return C
end
LinearAlgebra.transpose(a::AnyTracedRArray) = error("transpose not defined for $(typeof(a)).")
function LinearAlgebra.transpose!(B::AnyTracedRVector, A::AnyTracedRMatrix)
LinearAlgebra.check_transpose_axes((size(B,1), size(B,2)), size(A))
set_mlir_data!(B, get_mlir_data(Ops.reshape(A, length(B))))
end
function LinearAlgebra.transpose!(B::AnyTracedRMatrix, A::AnyTracedRVector)
LinearAlgebra.check_transpose_axes(size(B), (size(A, 1), size(A, 2)))
set_mlir_data!(B, get_mlir_data(Ops.broadcast_in_dim(A, [2], [1, length(A)])))
end
function LinearAlgebra.transpose!(B::AnyTracedRMatrix, A::AnyTracedRMatrix)
LinearAlgebra.check_transpose_axes(size(B), size(A))
set_mlir_data!(B, get_mlir_data(Ops.transpose(A, [2,1])))
end
end