-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathTypes.jl
193 lines (165 loc) · 6.58 KB
/
Types.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
abstract type RNumber{T<:ReactantPrimitive} <: Number end
abstract type AbstractConcreteNumber{T} <: RNumber{T} end
abstract type RArray{T,N} <: AbstractArray{T,N} end
abstract type AbstractConcreteArray{T,N} <: RArray{T,N} end
# Traced Types
## MissingTracedValue -- defined in ReactantCore
@leaf MissingTracedValue
## TracedRNumber
mutable struct TracedRNumber{T} <: RNumber{T}
paths::Tuple
mlir_data::Union{Nothing,MLIR.IR.Value}
function TracedRNumber{T}(
paths::Tuple, mlir_data::Union{Nothing,MLIR.IR.Value}
) where {T}
if !isnothing(mlir_data)
@assert size(MLIR.IR.type(mlir_data)) == ()
end
return new{T}(paths, mlir_data)
end
end
@leaf TracedRNumber
## TracedRArray
mutable struct TracedRArray{T,N} <: RArray{TracedRNumber{T},N}
paths::Tuple
mlir_data::Union{Nothing,MLIR.IR.Value}
shape::NTuple{N,Int}
function TracedRArray{T,N}(
paths::Tuple, mlir_data::Union{Nothing,MLIR.IR.Value}, shape
) where {T,N}
shape = Tuple(shape)
if !isnothing(mlir_data)
@assert size(MLIR.IR.type(mlir_data)) == shape "Expected: $(shape), got: $(size(MLIR.IR.type(mlir_data)))"
end
return new{T,N}(paths, mlir_data, shape)
end
end
@leaf TracedRArray
Adapt.parent_type(::Type{TracedRArray{T,N}}) where {T,N} = TracedRArray{T,N}
const WrappedTracedRArray{T,N} = WrappedArray{
TracedRNumber{T},N,TracedRArray,TracedRArray{T,N}
}
const AnyTracedRArray{T,N} = Union{TracedRArray{T,N},WrappedTracedRArray{T,N}}
const AnyTracedRVector{T} = AnyTracedRArray{T,1}
const AnyTracedRMatrix{T} = Union{
AnyTracedRArray{T,2},
LinearAlgebra.Diagonal{TracedRNumber{T},TracedRArray{T,1}},
LinearAlgebra.Tridiagonal{TracedRNumber{T},TracedRArray{T,1}},
}
const AnyTracedRVecOrMat{T} = Union{AnyTracedRVector{T},AnyTracedRMatrix{T}}
## TracedRNG
mutable struct TracedRNG <: Random.AbstractRNG
seed::TracedRArray{UInt64,1}
const algorithm::String
end
# Concrete Types
## ConcretePJRTNumber
mutable struct ConcretePJRTNumber{T,D,S<:Sharding.ShardInfo} <: AbstractConcreteNumber{T}
data::NTuple{D,XLA.PJRT.AsyncBuffer}
sharding::S
end
ConcretePJRTNumber{T,1,Sharding.NoShardInfo}(x::Number) where {T} = ConcretePJRTNumber{T}(x)
function ConcretePJRTNumber{T}(data::Tuple{XLA.PJRT.AsyncBuffer}) where {T}
return ConcretePJRTNumber{T,1,Sharding.NoShardInfo}(data, Sharding.NoShardInfo())
end
@leaf ConcretePJRTNumber
function ConcretePJRTNumber{T}(data::T2; kwargs...) where {T<:Number,T2<:Number}
carray = ConcretePJRTArray(fill(convert(T, data)); kwargs...)
if !Sharding.is_sharded(carray.sharding)
return ConcretePJRTNumber{T,1,typeof(carray.sharding)}(
(carray.data[1],), carray.sharding
)
end
@assert all(isnothing, carray.sharding.partition_spec) "ConcretePJRTNumber cannot be \
sharded"
return ConcretePJRTNumber{T,length(carray.data),typeof(carray.sharding)}(
carray.data, carray.sharding
)
end
function ConcretePJRTNumber(data::T; kwargs...) where {T<:Number}
return ConcretePJRTNumber{T}(data; kwargs...)
end
## ConcretePJRTArray
mutable struct ConcretePJRTArray{T,N,D,S<:Sharding.ShardInfo} <: AbstractConcreteArray{T,N}
data::NTuple{D,XLA.PJRT.AsyncBuffer}
shape::NTuple{N,Int}
sharding::S
end
@leaf ConcretePJRTArray
Adapt.parent_type(::Type{<:ConcretePJRTArray{T,N}}) where {T,N} = ConcretePJRTArray{T,N}
function Adapt.parent_type(::Type{ConcretePJRTArray{T,N,D,S}}) where {T,N,D,S}
return ConcretePJRTArray{T,N,D,S}
end
Base.@deprecate ConcretePJRTArray(data::Number; kwargs...) ConcretePJRTNumber(
data; kwargs...
)
function ConcretePJRTArray{T,N}(
data::Tuple{XLA.PJRT.AsyncBuffer}, shape::NTuple{N,Int}
) where {T,N}
return ConcretePJRTArray{T,N,1,Sharding.NoShardInfo}(
data, shape, Sharding.NoShardInfo()
)
end
function ConcretePJRTArray(
data::Array{T,N};
client::XLA.AbstractClient=XLA.default_backend(),
idx::Union{Int,Nothing}=nothing,
device::Union{Nothing,XLA.AbstractDevice}=nothing,
sharding::Sharding.AbstractSharding=Sharding.NoSharding(),
) where {T,N}
if !Sharding.is_sharded(sharding)
if device === nothing
if idx === nothing
device = XLA.default_device(client)
else
device = XLA.get_device(client, idx)
end
else
if idx !== nothing
device_from_idx = XLA.get_device(client, idx)
@assert device_from_idx == device "If both `idx` and `device` are \
specified, `idx` must match `device`"
end
end
sdata, sharding = sharding(client, device, data)
return ConcretePJRTArray{T,N,1,typeof(sharding)}(sdata, size(data), sharding)
end
@assert device === nothing && idx === nothing "If `sharding` is not `NoSharding`, `device` and `idx` cannot be specified!"
sharded_data, sharding = sharding(client, nothing, data)
return ConcretePJRTArray{T,N,length(sharded_data),typeof(sharding)}(
sharded_data, size(data), sharding
)
end
XLA.await(x::Union{ConcretePJRTArray,ConcretePJRTNumber}) = foreach(XLA.await, x.data)
XLA.client(x::Union{ConcretePJRTArray,ConcretePJRTNumber}) = XLA.client(x.data)
function XLA.device(x::Union{ConcretePJRTArray,ConcretePJRTNumber})
x.sharding isa Sharding.NoShardInfo && return XLA.device(only(x.data))
return nothing # This is intentional to make constructing ConcretePJRTArrays easier
end
const ConcretePJRTScalar{T} = Union{ConcretePJRTArray{T,0},ConcretePJRTNumber{T}}
const WrappedConcretePJRTArray{T,N,D,S} = WrappedArray{
T,N,ConcretePJRTArray,ConcretePJRTArray{T,N,D,S}
}
const AnyConcretePJRTArray{T,N,D,S} = Union{
ConcretePJRTArray{T,N,D,S},WrappedConcretePJRTArray{T,N,D,S}
}
ConcretePJRTArray(x::AnyConcretePJRTArray) = ConcretePJRTArray{eltype(x),ndims(x)}(x)
ConcretePJRTArray{T}(x::AnyConcretePJRTArray) where {T} = ConcretePJRTArray{T,ndims(x)}(x)
ConcretePJRTArray{T,N}(x::ConcretePJRTArray{T,N}) where {T,N} = x
function ConcretePJRTArray{T,N}(x::AnyConcretePJRTArray) where {T,N}
ancestor_x = ancestor(x)
return ConcretePJRTArray(
convert(Array{T,N}, x);
client=XLA.client(ancestor_x),
device=XLA.device(ancestor_x),
sharding=ancestor_x.sharding,
)
end
## ConcreteRNG
mutable struct ConcreteRNG{S<:ConcretePJRTArray} <: Random.AbstractRNG
seed::S
const algorithm::String
end
## Aliases to prevent breaking changes
const ConcreteRArray = ConcretePJRTArray
const ConcreteRNumber = ConcretePJRTNumber