Skip to content

Commit c251d53

Browse files
committed
Combine fixtures in test_constraints
1 parent 0e3f40d commit c251d53

File tree

1 file changed

+17
-2
lines changed

1 file changed

+17
-2
lines changed

tests/test_constraints.py

Lines changed: 17 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
import numpy as np
44
import pandas as pd
55
import xarray as xr
6-
from pytest import approx, fixture, raises
6+
from pytest import approx, fixture, mark, raises
77

88
from muse import examples
99
from muse.constraints import (
@@ -65,7 +65,6 @@ def model_data():
6565
).sel(year=INVESTMENT_YEAR).groupby("technology").sum("asset").rename(
6666
technology="asset"
6767
)
68-
6968
# Remove un-demanded commodities
7069
market_demand = market_demand.sel(
7170
commodity=(market_demand > 0).any(dim=["timeslice", "asset"])
@@ -285,6 +284,9 @@ def test_lp_constraints_matrix_b_is_scalar(lpcosts, constraints):
285284
"""B is a scalar - output should be equivalent to a single row matrix."""
286285
constraint = constraints["max_production"]
287286

287+
constraint = constraint_data["constraints"]["max_production"]
288+
lpcosts = constraint_data["lp_costs"]
289+
288290
for attr in ["capacity", "production"]:
289291
lpconstraint = lp_constraint_matrix(
290292
xr.DataArray(1), getattr(constraint, attr), getattr(lpcosts, attr)
@@ -300,6 +302,9 @@ def test_max_production_constraint_diagonal(lpcosts, constraints):
300302
"""Test production side of max capacity production is diagonal."""
301303
constraint = constraints["max_production"]
302304

305+
constraint = constraint_data["constraints"]["max_production"]
306+
lpcosts = constraint_data["lp_costs"]
307+
303308
# Test capacity constraints
304309
result = lp_constraint_matrix(constraint.b, constraint.capacity, lpcosts.capacity)
305310
decision_dims = {f"d({x})" for x in lpcosts.capacity.dims}
@@ -329,6 +334,9 @@ def test_lp_constraint(lpcosts, constraints):
329334

330335
constraint = constraints["max_production"]
331336

337+
constraint = constraint_data["constraints"]["max_production"]
338+
lpcosts = constraint_data["lp_costs"]
339+
332340
result = lp_constraint(constraint, lpcosts)
333341
constraint_dims = {
334342
f"c({x})" for x in set(lpcosts.production.dims).union(constraint.b.dims)
@@ -533,6 +541,13 @@ def test_scipy_solver(model_data, lp_inputs, constraints):
533541
"""Test the scipy solver for demand matching."""
534542
from muse.investments import scipy_match_demand
535543

544+
constraints = [
545+
constraint_data["constraints"]["max_production"],
546+
constraint_data["constraints"]["max_capacity_expansion"],
547+
constraint_data["constraints"]["demand"],
548+
constraint_data["constraints"]["demand_limiting_capacity"],
549+
]
550+
536551
solution = scipy_match_demand(
537552
costs=lp_inputs["capacity_costs"],
538553
commodities=lp_inputs["commodities"],

0 commit comments

Comments
 (0)