33import numpy as np
44import pandas as pd
55import xarray as xr
6- from pytest import approx , fixture , raises
6+ from pytest import approx , fixture , mark , raises
77
88from muse import examples
99from muse .constraints import (
@@ -65,7 +65,6 @@ def model_data():
6565 ).sel (year = INVESTMENT_YEAR ).groupby ("technology" ).sum ("asset" ).rename (
6666 technology = "asset"
6767 )
68-
6968 # Remove un-demanded commodities
7069 market_demand = market_demand .sel (
7170 commodity = (market_demand > 0 ).any (dim = ["timeslice" , "asset" ])
@@ -285,6 +284,9 @@ def test_lp_constraints_matrix_b_is_scalar(lpcosts, constraints):
285284 """B is a scalar - output should be equivalent to a single row matrix."""
286285 constraint = constraints ["max_production" ]
287286
287+ constraint = constraint_data ["constraints" ]["max_production" ]
288+ lpcosts = constraint_data ["lp_costs" ]
289+
288290 for attr in ["capacity" , "production" ]:
289291 lpconstraint = lp_constraint_matrix (
290292 xr .DataArray (1 ), getattr (constraint , attr ), getattr (lpcosts , attr )
@@ -300,6 +302,9 @@ def test_max_production_constraint_diagonal(lpcosts, constraints):
300302 """Test production side of max capacity production is diagonal."""
301303 constraint = constraints ["max_production" ]
302304
305+ constraint = constraint_data ["constraints" ]["max_production" ]
306+ lpcosts = constraint_data ["lp_costs" ]
307+
303308 # Test capacity constraints
304309 result = lp_constraint_matrix (constraint .b , constraint .capacity , lpcosts .capacity )
305310 decision_dims = {f"d({ x } )" for x in lpcosts .capacity .dims }
@@ -329,6 +334,9 @@ def test_lp_constraint(lpcosts, constraints):
329334
330335 constraint = constraints ["max_production" ]
331336
337+ constraint = constraint_data ["constraints" ]["max_production" ]
338+ lpcosts = constraint_data ["lp_costs" ]
339+
332340 result = lp_constraint (constraint , lpcosts )
333341 constraint_dims = {
334342 f"c({ x } )" for x in set (lpcosts .production .dims ).union (constraint .b .dims )
@@ -533,6 +541,13 @@ def test_scipy_solver(model_data, lp_inputs, constraints):
533541 """Test the scipy solver for demand matching."""
534542 from muse .investments import scipy_match_demand
535543
544+ constraints = [
545+ constraint_data ["constraints" ]["max_production" ],
546+ constraint_data ["constraints" ]["max_capacity_expansion" ],
547+ constraint_data ["constraints" ]["demand" ],
548+ constraint_data ["constraints" ]["demand_limiting_capacity" ],
549+ ]
550+
536551 solution = scipy_match_demand (
537552 costs = lp_inputs ["capacity_costs" ],
538553 commodities = lp_inputs ["commodities" ],
0 commit comments