-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmomentum_strategy_modified.py
180 lines (146 loc) · 6.27 KB
/
momentum_strategy_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import backtrader as bt
import numpy as np
from scipy.stats import linregress
import pandas as pd
from get_stocks import get_dir_stocks
import matplotlib.pyplot as plt
# Load sentiment data
sentiment_data = pd.read_csv('Sentiments.csv', parse_dates=['date'])
sentiment_data.set_index('date', inplace=True)
# Calculate quarterly average sentiment scores
quarterly_sentiments = sentiment_data.groupby([sentiment_data.index.to_period("Q"), 'ticker'])['sentiment score'].mean().unstack()
# Momentum Indicator
class Momentum(bt.Indicator):
lines = ('trend',)
params = (('period', 90),)
def __init__(self):
self.addminperiod(self.params.period)
def next(self):
returns = np.log(self.data.get(size=self.p.period))
x = np.arange(len(returns))
slope, _, rvalue, _, _ = linregress(x, returns)
annualized = (1 + slope) ** 252
self.lines.trend[0] = annualized * (rvalue ** 2)
# Momentum Strategy
class Strategy(bt.Strategy):
def __init__(self):
self.i = 0
self.inds = {}
self.spy = self.datas[0]
self.stocks = self.datas[1:]
self.portfolio_values = []
self.spy_sma200 = bt.indicators.SimpleMovingAverage(self.spy.close, period=200)
for d in self.stocks:
self.inds[d] = {}
self.inds[d]["momentum"] = Momentum(d.close, period=90)
self.inds[d]["sma100"] = bt.indicators.SimpleMovingAverage(d.close, period=100)
self.inds[d]["atr20"] = bt.indicators.ATR(d, period=20)
self.quarterly_sentiments = quarterly_sentiments
def prenext(self):
self.next()
def next(self):
if self.i % 5 == 0:
self.rebalance_portfolio()
if self.i % 10 == 0:
self.rebalance_positions()
self.i += 1
self.portfolio_values.append(self.broker.get_value())
def rebalance_portfolio(self):
self.rankings = list(filter(lambda d: len(d) > 100, self.stocks))
# Fetch sentiment data for the last quarter
current_date = self.datas[0].datetime.date(0)
current_quarter = pd.to_datetime(current_date).to_period("Q")
quarter = current_quarter - 1
composite_momentum = {}
if quarter in self.quarterly_sentiments.index:
sentiments = self.quarterly_sentiments.loc[quarter]
for d in self.rankings:
ticker = d._name
if ticker in sentiments:
# Calculate composite momentum
composite_momentum[d] = 0.4 * self.inds[d]["momentum"][0] + 0.6 * sentiments[ticker]
else:
composite_momentum[d] = self.inds[d]["momentum"][0]
# Sort stocks based on the composite momentum
self.rankings.sort(key=lambda d: composite_momentum[d], reverse=True)
else:
self.rankings.sort(key=lambda d: self.inds[d]["momentum"][0], reverse=True)
for i, d in enumerate(self.rankings):
if self.getposition(self.data).size:
if i > len(self.rankings) * 0.2 or d < self.inds[d]["sma100"]:
self.close(d)
if self.spy < self.spy_sma200:
return
for i, d in enumerate(self.rankings[:int(len(self.rankings) * 0.2)]):
cash = self.broker.get_cash()
value = self.broker.get_value()
if cash <= 0:
break
if not self.getposition(self.data).size:
size = value * 0.001 / self.inds[d]["atr20"]
self.buy(d, size=size)
def rebalance_positions(self):
num_stocks = len(self.rankings)
if self.spy < self.spy_sma200:
return
for i, d in enumerate(self.rankings[:int(num_stocks * 0.2)]):
cash = self.broker.get_cash()
value = self.broker.get_value()
if cash <= 0:
break
size = value * 0.001 / self.inds[d]["atr20"]
self.order_target_size(d, size)
# Initialize Cerebro
cerebro = bt.Cerebro(stdstats=False)
cerebro.broker.set_coc(True)
# Add Data
tickers = get_dir_stocks('./IVV_Constitutents_Price_Data_Dec_2022')
datafeeds = [
bt.feeds.PandasData(dataname=pd.read_csv(f'./IVV_Constitutents_Price_Data_Dec_2022/{ticker}.csv', parse_dates=True, index_col=0), plot=False, name=ticker)
for ticker in tickers if len(pd.read_csv(f'./IVV_Constitutents_Price_Data_Dec_2022/{ticker}.csv')) > 100
]
for data in datafeeds:
cerebro.adddata(data)
# Add Strategy, and Analyzer
cerebro.addanalyzer(bt.analyzers.TimeReturn, _name='time_return')
cerebro.addstrategy(Strategy)
# Run the Backtest
results = cerebro.run()
daily_returns = list(results[0].analyzers.time_return.get_analysis().values())
portfolio_value = np.array(results[0].portfolio_values)
initial_portfolio_value = portfolio_value[0]
# Total Returns
total_return = (portfolio_value[-1] - initial_portfolio_value) / initial_portfolio_value * 100
print(f"Total Return: {total_return:.2f}%")
# Data span (in years)
start_date = pd.Timestamp('2022-03-01')
end_date = pd.Timestamp('2023-07-28')
years = (end_date - start_date).days / 365.25
# Annualized Returns
annualized_return = (portfolio_value[-1] / initial_portfolio_value) ** (1 / years) - 1
annualized_return *= 100
print(f"Annualized Return: {annualized_return:.2f}%")
# Max Drawdown
running_max = np.maximum.accumulate(portfolio_value)
running_drawdown = (portfolio_value - running_max) / running_max
max_drawdown = np.min(running_drawdown) * 100
print(f"Max Drawdown: {max_drawdown:.2f}%")
# Sharpe Ratio
daily_returns = np.diff(portfolio_value) / portfolio_value[:-1]
risk_free_rate = 0.0089
annualized_return_decimal = annualized_return / 100
sharpe_ratio = (annualized_return_decimal - risk_free_rate) / (daily_returns.std() * np.sqrt(252))
print(f"Sharpe Ratio: {sharpe_ratio:.2f}")
# Extract data from the strategy
portfolio_values = np.array(results[0].portfolio_values)
dates = [bt.num2date(dt) for dt in results[0].datas[0].datetime.array]
# Create the plot
plt.figure(figsize=(12, 6))
plt.plot(dates, portfolio_values, label='Portfolio Value', color='salmon')
plt.title('Portfolio Value Over Time')
plt.xlabel('Date')
plt.ylabel('Portfolio Value in $')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()