forked from ageron/handson-ml2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment.yml
48 lines (48 loc) · 2.66 KB
/
environment.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
name: tf2
channels:
- conda-forge
- defaults
dependencies:
- atari_py=0.2 # used only in chapter 18
- box2d-py=2.3 # used only in chapter 18
- ftfy=5.8 # used only in chapter 16 by the transformers library
- graphviz # used only in chapter 6 for dot files
- gym=0.18 # used only in chapter 18
- ipython=7.20 # a powerful Python shell
- ipywidgets=7.6 # optionally used only in chapter 12 for tqdm in Jupyter
- joblib=0.14 # used only in chapter 2 to save/load Scikit-Learn models
- jupyter=1.0 # to edit and run Jupyter notebooks
- matplotlib=3.3 # beautiful plots. See tutorial tools_matplotlib.ipynb
- nbdime=2.1 # optional tool to diff Jupyter notebooks
- nltk=3.4 # optionally used in chapter 3, exercise 4
- numexpr=2.7 # used only in the Pandas tutorial for numerical expressions
- numpy=1.19 # Powerful n-dimensional arrays and numerical computing tools
- opencv=4.5 # used only in chapter 18 by TF Agents for image preprocessing
- pandas=1.2 # data analysis and manipulation tool
- pillow=8.1 # image manipulation library, (used by matplotlib.image.imread)
- pip # Python's package-management system
- py-xgboost=0.90 # used only in chapter 7 for optimized Gradient Boosting
- pyglet=1.5 # used only in chapter 18 to render environments
- pyopengl=3.1 # used only in chapter 18 to render environments
- python=3.7 # Python! Not using latest version as some libs lack support
- python-graphviz # used only in chapter 6 for dot files
#- pyvirtualdisplay=1.3 # used only in chapter 18 if on headless server
- requests=2.25 # used only in chapter 19 for REST API queries
- scikit-learn=0.24 # machine learning library
- scipy=1.6 # scientific/technical computing library
- tqdm=4.56 # a progress bar library
- transformers=4.3 # Natural Language Processing lib for TF or PyTorch
- wheel # built-package format for pip
- widgetsnbextension=3.5 # interactive HTML widgets for Jupyter notebooks
- pip:
- tensorboard-plugin-profile==2.4.0 # profiling plugin for TensorBoard
- tensorboard==2.4.1 # TensorFlow's visualization toolkit
- tensorflow-addons==0.12.1 # used only in chapter 16 for a seq2seq impl.
- tensorflow-datasets==3.0.0 # datasets repository, ready to use
- tensorflow-hub==0.9.0 # trained ML models repository, ready to use
- tensorflow-probability==0.12.1 # Optional. Probability/Stats lib.
- tensorflow-serving-api==2.4.1 # or tensorflow-serving-api-gpu if gpu
- tensorflow==2.4.2 # Deep Learning library
- tf-agents==0.7.1 # Reinforcement Learning lib based on TensorFlow
- tfx==0.27.0 # platform to deploy production ML pipelines
- urlextract==1.2.0 # optionally used in chapter 3, exercise 4