This repository has been archived by the owner on Aug 8, 2022. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfwup-revert.conf
239 lines (214 loc) · 8.09 KB
/
fwup-revert.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Revert firmware for the Raspberry Pi 0
#
# To use:
# 1. Run `fwup -c -f fwup-revert.conf -o revert.fw` and copy revert.fw to
# the device. This is done automatically as part of the Nerves system
# build process. The file is stored in `/usr/share/fwup/revert.fw`.
# 2. On the device, run `fwup -t revert revert.fw -d $NERVES_FW_DEVPATH`. If
# it succeeds, reboot. If not, then it's possible that there isn't a previous
# firmware or the metadata about what's stored where is corrupt or out of
# sync.
#
# It is critical that this is kept in sync with the main fwup.conf.
require-fwup-version="0.19.0"
#
# Firmware metadata
#
# All of these can be overriden using environment variables of the same name.
#
# Run 'fwup -m' to query values in a .fw file.
# Use 'fw_printenv' to query values on the target.
#
# These are used by Nerves libraries to introspect.
define(NERVES_FW_PRODUCT, "Nerves Firmware")
define(NERVES_FW_DESCRIPTION, "")
define(NERVES_FW_VERSION, "${NERVES_SDK_VERSION}")
define(NERVES_FW_PLATFORM, "rpi0")
define(NERVES_FW_ARCHITECTURE, "arm")
define(NERVES_FW_AUTHOR, "The Nerves Team")
define(NERVES_FW_DEVPATH, "/dev/mmcblk0")
define(NERVES_FW_APPLICATION_PART0_DEVPATH, "/dev/mmcblk0p3") # Linux part number is 1-based
define(NERVES_FW_APPLICATION_PART0_FSTYPE, "ext4")
define(NERVES_FW_APPLICATION_PART0_TARGET, "/root")
# Default paths if not specified via the commandline
define(ROOTFS, "${NERVES_SYSTEM}/images/rootfs.squashfs")
# This configuration file will create an image that has an MBR and the
# following 3 partitions:
#
# +----------------------------+
# | MBR |
# +----------------------------+
# | Firmware configuration data|
# | (formatted as uboot env) |
# +----------------------------+
# | p0*: Boot A (FAT32) |
# | zImage, bootcode.bin, |
# | config.txt, etc. |
# +----------------------------+
# | p0*: Boot B (FAT32) |
# +----------------------------+
# | p1*: Rootfs A (squashfs) |
# +----------------------------+
# | p1*: Rootfs B (squashfs) |
# +----------------------------+
# | p2: Application (ext4) |
# +----------------------------+
#
# The p0/p1 partition points to whichever of configurations A or B that is
# active.
#
# The image is sized to be less than 1 GB so that it fits on nearly any SDCard
# around. If you have a larger SDCard and need more space, feel free to bump
# the partition sizes below.
# The Raspberry Pi is incredibly picky on the partition sizes and in ways that
# I don't understand. Test changes one at a time to make sure that they boot.
# (Sizes are in 512 byte blocks)
define(UBOOT_ENV_OFFSET, 16)
define(UBOOT_ENV_COUNT, 16) # 8 KB
define(BOOT_A_PART_OFFSET, 63)
define(BOOT_A_PART_COUNT, 38630)
define-eval(BOOT_B_PART_OFFSET, "${BOOT_A_PART_OFFSET} + ${BOOT_A_PART_COUNT}")
define(BOOT_B_PART_COUNT, ${BOOT_A_PART_COUNT})
# Let the rootfs have room to grow up to 128 MiB and align it to the nearest 1
# MB boundary
define(ROOTFS_A_PART_OFFSET, 77324)
define(ROOTFS_A_PART_COUNT, 289044)
define-eval(ROOTFS_B_PART_OFFSET, "${ROOTFS_A_PART_OFFSET} + ${ROOTFS_A_PART_COUNT}")
define(ROOTFS_B_PART_COUNT, ${ROOTFS_A_PART_COUNT})
# Application partition. This partition can occupy all of the remaining space.
# Size it to fit the destination.
define-eval(APP_PART_OFFSET, "${ROOTFS_B_PART_OFFSET} + ${ROOTFS_B_PART_COUNT}")
define(APP_PART_COUNT, 1048576)
# Firmware archive metadata
meta-product = ${NERVES_FW_PRODUCT}
meta-description = ${NERVES_FW_DESCRIPTION}
meta-version = ${NERVES_FW_VERSION}
meta-platform = ${NERVES_FW_PLATFORM}
meta-architecture = ${NERVES_FW_ARCHITECTURE}
meta-author = ${NERVES_FW_AUTHOR}
meta-vcs-identifier = ${NERVES_FW_VCS_IDENTIFIER}
meta-misc = ${NERVES_FW_MISC}
mbr mbr-a {
partition 0 {
block-offset = ${BOOT_A_PART_OFFSET}
block-count = ${BOOT_A_PART_COUNT}
type = 0xc # FAT32
boot = true
}
partition 1 {
block-offset = ${ROOTFS_A_PART_OFFSET}
block-count = ${ROOTFS_A_PART_COUNT}
type = 0x83 # Linux
}
partition 2 {
block-offset = ${APP_PART_OFFSET}
block-count = ${APP_PART_COUNT}
type = 0x83 # Linux
expand = true
}
# partition 3 is unused
}
mbr mbr-b {
partition 0 {
block-offset = ${BOOT_B_PART_OFFSET}
block-count = ${BOOT_B_PART_COUNT}
type = 0xc # FAT32
boot = true
}
partition 1 {
block-offset = ${ROOTFS_B_PART_OFFSET}
block-count = ${ROOTFS_B_PART_COUNT}
type = 0x83 # Linux
}
partition 2 {
block-offset = ${APP_PART_OFFSET}
block-count = ${APP_PART_COUNT}
type = 0x83 # Linux
expand = true
}
# partition 3 is unused
}
# Location where installed firmware information is stored.
# While this is called "u-boot", u-boot isn't involved in this
# setup. It just provides a convenient key/value store format.
uboot-environment uboot-env {
block-offset = ${UBOOT_ENV_OFFSET}
block-count = ${UBOOT_ENV_COUNT}
}
task revert.a {
# This task reverts to the A partition, so check that we're running on B
require-partition-offset(0, ${BOOT_B_PART_OFFSET})
require-partition-offset(1, ${ROOTFS_B_PART_OFFSET})
require-uboot-variable(uboot-env, "nerves_fw_active", "b")
# Verify that partition A has the expected platform/architecture
require-uboot-variable(uboot-env, "a.nerves_fw_platform", "${NERVES_FW_PLATFORM}")
require-uboot-variable(uboot-env, "a.nerves_fw_architecture", "${NERVES_FW_ARCHITECTURE}")
on-init {
info("Reverting to partition A")
# Switch over
uboot_setenv(uboot-env, "nerves_fw_active", "a")
uboot_setenv(uboot-env, "nerves_fw_validated", "1")
mbr_write(mbr-a)
}
}
task revert.b {
# This task reverts to the B partition, so check that we're running on A
require-partition-offset(0, ${BOOT_A_PART_OFFSET})
require-partition-offset(1, ${ROOTFS_A_PART_OFFSET})
require-uboot-variable(uboot-env, "nerves_fw_active", "a")
# Verify that partition B has the expected platform/architecture
require-uboot-variable(uboot-env, "b.nerves_fw_platform", "${NERVES_FW_PLATFORM}")
require-uboot-variable(uboot-env, "b.nerves_fw_architecture", "${NERVES_FW_ARCHITECTURE}")
on-init {
info("Reverting to partition B")
# Switch over
uboot_setenv(uboot-env, "nerves_fw_active", "b")
uboot_setenv(uboot-env, "nerves_fw_validated", "1")
mbr_write(mbr-b)
}
}
task revert.unexpected.a {
require-uboot-variable(uboot-env, "a.nerves_fw_platform", "${NERVES_FW_PLATFORM}")
require-uboot-variable(uboot-env, "a.nerves_fw_architecture", "${NERVES_FW_ARCHITECTURE}")
on-init {
# Case where A is good, and the desire is to go to B.
error("It doesn't look like there's anything to revert to in partition B.")
}
}
task revert.unexpected.b {
require-uboot-variable(uboot-env, "b.nerves_fw_platform", "${NERVES_FW_PLATFORM}")
require-uboot-variable(uboot-env, "b.nerves_fw_architecture", "${NERVES_FW_ARCHITECTURE}")
on-init {
# Case where B is good, and the desire is to go to A.
error("It doesn't look like there's anything to revert to in partition A.")
}
}
task revert.wrongplatform {
on-init {
error("Expecting platform=${NERVES_FW_PLATFORM} and architecture=${NERVES_FW_ARCHITECTURE}")
}
}
# Run "fwup /usr/share/fwup/revert.fw -t status -d /dev/mmcblk0 -q -U" to check the status.
task status.aa {
require-path-at-offset("/", ${ROOTFS_A_PART_OFFSET})
require-uboot-variable(uboot-env, "nerves_fw_active", "a")
on-init { info("a") }
}
task status.ab {
require-path-at-offset("/", ${ROOTFS_A_PART_OFFSET})
require-uboot-variable(uboot-env, "nerves_fw_active", "b")
on-init { info("a->b") }
}
task status.bb {
require-path-at-offset("/", ${ROOTFS_B_PART_OFFSET})
require-uboot-variable(uboot-env, "nerves_fw_active", "b")
on-init { info("b") }
}
task status.ba {
require-path-at-offset("/", ${ROOTFS_B_PART_OFFSET})
require-uboot-variable(uboot-env, "nerves_fw_active", "a")
on-init { info("b->a") }
}
task status.fail {
on-init { error("fail") }
}