forked from OptML-KEC/optml-mini-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
191 lines (151 loc) · 7.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import json
import time
import numpy as np
import torch
from torch.nn.utils import parameters_to_vector
def train(model, optimizer, criterion, training_loader, validation_loader,
device, nb_epochs, verbose, zo_optim=False, scheduler=None,
record_weights=False, weights_path=None):
"""
Train the given model.
:param model: model to train
:param optimizer: optimizer to use
:param criterion: loss function
:param training_loader: train data loader
:param validation_loader: validation data loader
:param device: 'cpu' or 'cuda'
:param nb_epochs: number of epochs for training
:param verbose: whether to print progress information
:param zo_optim: whether ZO optimization is used
:param scheduler: learning rate scheduler
:param record_weights: whether to record the weights at each epoch
:param weights_path: where to save the weights if needed
:return: train losses, validation losses, validation accuracies, times per epoch
"""
train_losses = []
validation_losses = []
validation_accuracies = []
epoch_time = []
if record_weights:
# Initialize structures to record the weights
names_sizes = [(name, p.numel()) for name, p in model.named_parameters()]
weights_sequences = dict()
for n, s in names_sizes:
weights_sequences[n] = np.zeros((nb_epochs + 1, s))
# Record the original weights before training
for n, p in model.named_parameters():
weights_sequences[n][0, :] = parameters_to_vector(p).to('cpu').tolist()
if zo_optim:
# Global running_loss
running_loss = 0
for epoch in range(nb_epochs):
start = time.time()
# Training
model.train()
training_loss = 0.0
for data in training_loader:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
# Forward pass
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
if zo_optim:
# Closure used in the ZO optimizer
running_loss = running_loss + loss.item()
batch_size = labels.size(0)
def closure(size_params, mu):
grad_est = []
# Generate a random direction uniformly on the unit ball or with a gaussian distribution
## ---
# The correct way to generate a uniform variable on the sphere is by generating u in this way and then projecting u onto the sphere.
# As we did not immediately find out how to have a uniform variable on the sphere we first used the way that is not commented on.
# We found that after doing the experiments how to do it, but after testing it did not change the performance of our algorithm,
# so we left the first version for the sake of reproducibility.
# u = torch.normal(mean=torch.zeros(size_params), std=1)
## ---
u = 2 * (torch.rand(size_params) - 0.5)
u.div_(torch.norm(u, "fro"))
u = u.to(device)
# save the state of the model
model_init = dict(model.state_dict())
model_init_parameters = model.parameters()
# we add to the initial parameters a random perturbation times \mu
start_ind = 0
for param_tensor in model.parameters():
end_ind = start_ind + param_tensor.view(-1).size()[0]
param_tensor.add_(u[start_ind:end_ind].view(param_tensor.size()).float(), alpha=mu)
start_ind = end_ind
# evaluation of the model and the with a random perturbation of the parameters
output2 = model(inputs)
loss_random = criterion(output2, labels)
# compute the "gradient norm"
grad_norm = size_params * (loss_random - loss) / mu
start_ind = 0
for param_tensor in model_init_parameters:
end_ind = start_ind + param_tensor.view(-1).size()[0]
grad_est.append((grad_norm / batch_size) * u[start_ind:end_ind].view(param_tensor.size()))
start_ind = end_ind
# reload initial state of the parameters
model.load_state_dict(model_init) # try to subtract the random vector to get back initial params
return grad_est
if not zo_optim:
loss.backward()
optimizer.step()
else:
optimizer.step(closure)
training_loss += loss.item()
train_losses.append(training_loss / len(training_loader))
# Validation
model.eval()
with torch.no_grad():
correct_preds = 0
total_preds = 0
validation_loss = 0
for inputs, labels in validation_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
validation_loss += criterion(outputs, labels).data.item()
predictions = torch.argmax(outputs, 1)
total_preds += labels.size(0)
correct_preds += (predictions == labels).sum().item()
validation_loss = validation_loss / len(validation_loader)
validation_losses.append(validation_loss)
validation_accuracies.append(correct_preds / total_preds)
if scheduler is not None:
# Do a learning rate scheduler step
scheduler.step(validation_loss)
epoch_time.append(time.time() - start)
if record_weights:
# Record the weights of the model
for n, p in model.named_parameters():
weights_sequences[n][epoch + 1, :] = parameters_to_vector(p).to('cpu').tolist()
if verbose and epoch % 5 == 0:
print(
f'Epoch: {epoch + 1}/{nb_epochs} |train loss: {train_losses[-1]:.4f} |test loss: {validation_losses[-1]:.4f} |acc: {validation_accuracies[-1]:.4f} |time: {epoch_time[-1]:.4f}')
if record_weights:
# Save weights sequence to file
for n, p in weights_sequences.items():
np.save(f'{weights_path[:-2]}_{n}_{weights_path[-1]}', p)
return train_losses, validation_losses, validation_accuracies, epoch_time
def fix_seeds(seed: int):
"""
Fixes seed for all random functions
:param seed: int
Seed to be fixed
"""
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
print(f'Seed set to : {seed}')
def read_json(path):
"""
Read the given json
:param path: path of the json file
:return: json file as a dict
"""
with open(path, 'r') as f:
file = json.load(f)
return file