-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathncea_species.R
317 lines (274 loc) · 9.82 KB
/
ncea_species.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#' Network-scale cumulative effects assessments for a single focal species
#'
#' Assessment of cumulative effects and related metrics using the Beauchesne et al. 2021 method.
#'
#' @eval arguments(c("focus","drivers", "vc", "sensitivity", "metaweb", "trophic_sensitivity", "weights", "output", "output_format"))
#'
#' @examples
#' # Data
#' drivers <- rcea:::drivers
#' vc <- rcea:::vc
#' sensitivity <- rcea:::sensitivity
#' metaweb <- rcea:::metaweb
#' trophic_sensitivity <- rcea::trophic_sensitivity
#'
#' \dontrun{
#' # Network-scale effects for individual species
#' ncea_species(focus = "vc1", drivers, vc, sensitivity, metaweb, trophic_sensitivity)
#' ncea_species(focus = "vc1", drivers, vc, sensitivity, metaweb, trophic_sensitivity, output_format = "COG")
#' }
#' @export
ncea_species <- function(focus, drivers, vc, sensitivity, metaweb, trophic_sensitivity, w_d = 0.5, w_i = 0.25, output = "output/ncea", output_format = "geotiff") {
# ----------------------------------------------------------------------------
# NOTE: Function to extract results
ncea_species_res <- function(dat, metric) {
# Unlist
tmp <- data.table::rbindlist(dat)
if (metric == "species_contribution") {
out <- here::here(output, metric)
chk_create(out)
tmp |>
dplyr::group_by(vc_id) |>
dplyr::summarise(
dplyr::across(
dplyr::all_of(drnm),
\(x) sum(x, na.rm = TRUE) / area
)
) |>
dplyr::ungroup() |>
dplyr::left_join(vc_index, by = "vc_id") |>
dplyr::rename(vc_from = vc) |>
dplyr::select(-vc_id) |>
dplyr::mutate(vc = focus) |>
vroom::vroom_write(
file = here::here(out, glue::glue("{focus}.csv")),
delim = ","
)
} else {
# Effects / km2
out <- here::here(output, "cekm")
chk_create(out)
tmp |>
dplyr::summarise(
dplyr::across(
dplyr::all_of(drnm),
\(x) sum(x, na.rm = TRUE) / area
)
) |>
dplyr::mutate(vc = focus) |>
vroom::vroom_write(
file = here::here(out, glue::glue("{focus}_{metric}.csv")),
delim = ","
)
# Spatial distribution of effects
dat <- dplyr::left_join(xy, tmp, by = "id_cell") |>
dplyr::select(-id_cell, -vc_id) |>
stars::st_as_stars() |>
merge()
sf::st_crs(dat) <- prj
out <- here::here(output, metric)
chk_create(out)
if (output_format == "geotiff") {
stars::write_stars(
dat,
dsn = here::here(out, glue::glue("{focus}.tif")),
)
} else if (output_format == "COG") {
as(dat, "Raster") |>
terra::rast() |>
terra::writeRaster(
filename = here::here(out, glue::glue("{focus}.tif")),
filetype = "COG",
gdal = c("COMPRESS=LZW", "TILED=YES", "OVERVIEW_RESAMPLING=AVERAGE"),
overwrite = TRUE
)
}
}
}
# ----------------------------------------------------------------------------------------
# w_d + 2*w_i = 1
stopifnot(w_d + 2 * w_i == 1)
# Create output folder
chk_create(output)
# Projection
prj <- sf::st_crs(drivers)
# Area of focal species
n <- sum(vc[focus][[1]], na.rm = TRUE)
area <- vc |>
stars::st_res() |>
prod() * n
# xy coordinates
xy <- sf::st_coordinates(drivers) |>
dplyr::mutate(id_cell = 1:dplyr::n())
# Drivers and vcs as data.frames
drivers <- as.data.frame(drivers) |>
dplyr::mutate(id_cell = 1:dplyr::n()) |>
dplyr::select(-x, -y)
vc <- as.data.frame(vc) |>
dplyr::select(-x, -y) |>
dplyr::mutate(dplyr::across(dplyr::everything(), as.logical))
# Index of vc
vc_index <- data.frame(
vc = colnames(vc),
vc_id = 1:ncol(vc)
)
# Add cell_id to vc
vc <- dplyr::mutate(vc, id_cell = 1:dplyr::n())
# Only select cells in which focal species is found
vc <- dplyr::filter(vc, get(focus))
drivers <- dplyr::filter(drivers, id_cell %in% vc$id_cell)
# Create object with cell id and remove cell_id from objects
id_cell <- vc$id_cell
vc <- dplyr::select(vc, -id_cell) |> as.matrix()
drivers <- dplyr::select(drivers, -id_cell) |> as.matrix()
# Names
vcnm <- colnames(vc)
drnm <- colnames(drivers)
# ID of focal species
focusID <- which(colnames(vc) == focus)
# Lists to store results
ncea_res <- list()
ncea_res$species_contribution <- list()
ncea_res$direct <- list()
ncea_res$indirect <- list()
# 3-species motifs for full metaweb
motifs <- triads(metaweb, trophic_sensitivity)
for (i in 1:nrow(vc)) {
v <- as.matrix(vc[i, ])
d <- drivers[i, ]
# id of species in cell i
idsp <- which(v)
# Direct effects
direct_effects <- sweep(sensitivity[idsp, ], MARGIN = 2, d, `*`)
# Direct pathways
direct_pathways <- data.frame(
vc_id = idsp,
effect = as.logical(rowSums(direct_effects, na.rm = TRUE))
)
# Add species id to direct_effects
direct_effects <- as.data.frame(direct_effects) |>
dplyr::mutate(vc_id = idsp)
# Select triads involving species found in cell j & focal species
uid <- (motifs$vc_i %in% idsp & motifs$vc_j %in% idsp & motifs$vc_k %in% idsp) &
(motifs$vc_i == focusID | motifs$vc_j == focusID | motifs$vc_k == focusID)
dat <- motifs[uid, ]
if (nrow(dat) > 0) {
dat <- dplyr::left_join(dat, direct_pathways, by = c("vc_i" = "vc_id")) |>
dplyr::left_join(direct_pathways, by = c("vc_j" = "vc_id")) |>
dplyr::left_join(direct_pathways, by = c("vc_k" = "vc_id")) |>
dplyr::filter(effect_i == effect.x & effect_j == effect.y & effect_k == effect)
tmp <- dat[, c("vc_i", "vc_j", "vc_k")]
sens <- dat[, c("TS_i", "TS_j", "TS_k")]
tmp2 <- tmp[rep(1:nrow(dat), each = 3), ]
dat <- data.frame(
vc_id = rep(c(t(tmp)), each = 3),
interaction = c(t(tmp2)),
Sensitivity = rep(c(t(sens)), each = 3)
) |>
dplyr::filter(vc_id == focusID)
} else {
dat <- data.frame(
vc_id = focusID,
interaction = focusID,
Sensitivity = 1
)
}
# Add direct effects
dat <- dplyr::left_join(dat, direct_effects, by = c("interaction" = "vc_id")) |>
dplyr::mutate(
direct = vc_id == interaction,
M = sum(direct)
)
# Weights
dat$weight <- dat$direct
dat$weight[dat$weight] <- w_d
dat$weight[!dat$weight] <- w_i
# Effects, i.e. multiply driver columns by trophic sensitivity and weights
dat <- dat |>
dplyr::mutate(
dplyr::across(
dplyr::all_of(drnm),
\(x) (x * weight * Sensitivity) / M
)
) |>
dplyr::select(
vc_id, interaction, direct, dplyr::all_of(drnm),
-weight, -Sensitivity, -M
)
# Species contribution to indirect effects
ncea_res$species_contribution[[i]] <- get_species_contribution_sp(dat) |>
dplyr::rename(vc_id = interaction) |>
dplyr::mutate(id_cell = id_cell[i])
# Direct & indirect effects
direct_indirect <- get_direct_indirect_sp(dat)
# Direct
ncea_res$direct[[i]] <- dplyr::filter(direct_indirect, direct) |>
dplyr::select(-direct) |>
dplyr::mutate(id_cell = id_cell[i])
# Indirect
ncea_res$indirect[[i]] <- dplyr::filter(direct_indirect, !direct) |>
dplyr::select(-direct) |>
dplyr::mutate(id_cell = id_cell[i])
# Net effects
ncea_res$net[[i]] <- get_net_sp(dat) |>
dplyr::mutate(id_cell = id_cell[i])
}
# Direct, indirect and net effects
ncea_species_res(ncea_res$direct, "direct")
ncea_species_res(ncea_res$indirect, "indirect")
ncea_species_res(ncea_res$net, "net")
ncea_res$direct <- ncea_res$indirect <- ncea_res$net <- NULL
# Species contribution summarized by species and area
out <- here::here(output, "species_contribution")
chk_create(out)
ncea_species_res(ncea_res$species_contribution, "species_contribution")
}
# ==============================================================================
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ------------------------------------------------------------------------------
get_direct_indirect_sp <- function(motif_effects) {
notDr <- c("id_cell", "vc_id", "interaction", "Sensitivity", "direct", "M", "weight")
drNames <- colnames(motif_effects)
drNames <- drNames[!drNames %in% notDr]
dplyr::group_by(motif_effects, vc_id, direct) |>
dplyr::summarise(
dplyr::across(
dplyr::all_of(drNames),
\(x) sum(x, na.rm = TRUE)
)
) |>
dplyr::ungroup()
}
# ==============================================================================
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ------------------------------------------------------------------------------
get_net_sp <- function(motif_effects) {
notDr <- c("id_cell", "vc_id", "interaction", "Sensitivity", "direct", "M", "weight")
drNames <- colnames(motif_effects)
drNames <- drNames[!drNames %in% notDr]
dplyr::group_by(motif_effects, vc_id) |>
dplyr::summarise(
dplyr::across(
dplyr::all_of(drNames),
\(x) sum(x, na.rm = TRUE)
)
) |>
dplyr::ungroup()
}
# ==============================================================================
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ------------------------------------------------------------------------------
get_species_contribution_sp <- function(motif_effects) {
notDr <- c("id_cell", "vc_id", "interaction", "Sensitivity", "direct", "M", "weight")
drNames <- colnames(motif_effects)
drNames <- drNames[!drNames %in% notDr]
dplyr::filter(motif_effects, !direct) |>
dplyr::group_by(interaction) |>
dplyr::summarise(
dplyr::across(
dplyr::all_of(drNames),
\(x) sum(x, na.rm = TRUE)
)
) |>
dplyr::ungroup()
}