forked from TUM-VT/FleetPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscenario_creator.py
394 lines (354 loc) · 20.9 KB
/
scenario_creator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os
from click import option
import pandas as pd
from src.misc.globals import *
from src.FleetSimulationBase import INPUT_PARAMETERS_FleetSimulationBase
from src.misc.init_modules import *
from typing import Dict, Tuple
FLEETPY_PATH = os.path.dirname(os.path.abspath(__file__))
#read md table into dataframe
INPUT_PARAMETERS_PATH = os.path.join(os.path.dirname(__file__), "Input_Parameters.md")
input_parameters = pd.read_table(INPUT_PARAMETERS_PATH, sep="|", header=0, index_col=1, skipinitialspace=True)
input_parameters = input_parameters.dropna(axis=1, how='all')
input_parameters = input_parameters.iloc[1:]
input_parameters.columns = input_parameters.columns.str.strip()
input_parameters["Parameter"] = input_parameters.index
for c in input_parameters.columns:
input_parameters[c] = input_parameters[c].str.strip()
input_parameters.set_index("Parameter", inplace=True)
#set dictionaries
parameter_docs = input_parameters['Description'].to_dict() # parameter name -> docu string
parameter_defaults = input_parameters['Default Value'].dropna().to_dict() # parameter name -> default value (no entry if no default value specified)
parameter_types = input_parameters["Type"].to_dict() # parameter name -> data type (in string form)
MODULE_PARAM_TO_DICT_LOAD = {
G_SIM_ENV : get_src_simulation_environments,
G_NETWORK_TYPE : get_src_routing_engines,
G_RQ_TYP1 : get_src_request_modules,
G_OP_MODULE : get_src_fleet_control_modules,
G_RA_RES_MOD : get_src_reservation_strategies,
G_OP_CH_M : get_src_charging_strategies,
G_OP_REPO_M : get_src_repositioning_strategies,
G_OP_DYN_P_M : get_src_dynamic_pricing_strategies,
G_OP_DYN_FS_M : get_src_dynamic_fleet_sizing_strategies,
G_RA_RP_BATCH_OPT: get_src_ride_pooling_batch_optimizers
}
def load_module_parameters(module_dict, module_str):
tmp = module_dict.get(module_str)
if tmp is not None:
module_name, class_name = tmp
module = importlib.import_module(module_name)
input_params_str = f"INPUT_PARAMETERS_{class_name}"
input_param_dict = getattr(module, input_params_str)
return input_param_dict
else:
raise IOError(f"{module_str} is invalid!")
def create_study_directories(study_name):
""" creates all directories within the current directory for a new study
:param study_name: (str) name of the new study
"""
protected = ["src", "documentation", "data"]
if study_name in protected:
raise IOError("ERROR {} can't be used as study_name!".format(study_name))
studies_folder = os.path.join(FLEETPY_PATH, "studies")
if not os.path.isdir(studies_folder):
print("Initializing Studies Folder {}".format(studies_folder))
os.mkdir(studies_folder)
study_folder = os.path.join(studies_folder, study_name)
if os.path.isdir(study_folder):
print("Warning: {} already existent!".format(study_name))
else:
os.mkdir(study_folder)
print("creating {}".format(study_folder))
preprocessing_folder = os.path.join(study_folder, "preprocessing")
if not os.path.isdir(preprocessing_folder):
os.mkdir(preprocessing_folder)
print("creating {}".format(preprocessing_folder))
scenarios_folder = os.path.join(study_folder, "scenarios")
if not os.path.isdir(scenarios_folder):
os.mkdir(scenarios_folder)
print("creating {}".format(scenarios_folder))
results_folder = os.path.join(study_folder, "results")
if not os.path.isdir(results_folder):
os.mkdir(results_folder)
print("creating {}".format(preprocessing_folder))
evaluation_folder = os.path.join(study_folder, "evaluation")
if not os.path.isdir(evaluation_folder):
os.mkdir(evaluation_folder)
print("creating {}".format(evaluation_folder))
return scenarios_folder
class Parameter():
def __init__(self, name, doc_string, type, default_value=None, options=None):
""" this class collects all necessary information describing a parameter
:param name: string name of the parameter (oder module)
:param doc_string: string describing the parameter
:param type: string describing the expected data type
:param default_value: (optional) value of the parameter if not actively specified
:param options: list possible options of the parameter (especially for modules); None, if no options are available"""
self.name = name
self.doc_string = doc_string
self.type = type
self.default_value = default_value
self.options = options
def __str__(self):
return f"name : {self.name} | doc : {self.doc_string} | type : {self.type} | default : {self.default_value} | options : {self.options}"
class ScenarioCreator():
def __init__(self):
self.possible_modules = list(MODULE_PARAM_TO_DICT_LOAD.keys())
self._current_mandatory_params = INPUT_PARAMETERS_FleetSimulationBase["input_parameters_mandatory"] # list of mandatory parameters that have not been selected
self._current_optional_params = INPUT_PARAMETERS_FleetSimulationBase["input_parameters_optional"] # list of optional parameters that have not been selected
self._current_mandatory_modules = INPUT_PARAMETERS_FleetSimulationBase["mandatory_modules"] # list of mandatory modules that have not been selected
self._current_optional_modules = INPUT_PARAMETERS_FleetSimulationBase["optional_modules"] # list of optional modules that have not been selected
self._currently_selected_modules = {} # module_name -> currently selected value
self._currently_selected_parameters = {} # parameter name -> currently selected value
self.parameter_dict : Dict[str, Parameter] = {} # parameter_name -> parameter (collects all possible parameters in FleetPy)
for module_name, module_load_fct in MODULE_PARAM_TO_DICT_LOAD.items():
module_dict = module_load_fct()
options = list(module_dict.keys())
self.parameter_dict[module_name] = Parameter(module_name, parameter_docs[module_name], parameter_types[module_name],
default_value=parameter_defaults.get(module_name), options=options)
for parameter_name, doc in parameter_docs.items():
if self.parameter_dict.get(parameter_name):
continue
self.parameter_dict[parameter_name] = Parameter(parameter_name, doc, parameter_types[parameter_name],
default_value=parameter_defaults.get(parameter_name))
study_name_str = "this parameter specifies the name of the simulation study. all simulation scenario configurations and simulation results \
are stored in the folder FleetPy\studies\{study_name}. If this folder does not exist, it will be create automatically!"
self.parameter_dict["study_name"] = Parameter("study_name", study_name_str, "str")
self._current_mandatory_params.append("study_name")
def _reset_module_init(self):
self._current_mandatory_params = INPUT_PARAMETERS_FleetSimulationBase["input_parameters_mandatory"] # list of mandatory parameters that have not been selected
self._current_optional_params = INPUT_PARAMETERS_FleetSimulationBase["input_parameters_optional"] # list of optional parameters that have not been selected
self._current_mandatory_params.append("study_name")
self._current_mandatory_modules = INPUT_PARAMETERS_FleetSimulationBase["mandatory_modules"] # list of mandatory modules that have not been selected
self._current_optional_modules = INPUT_PARAMETERS_FleetSimulationBase["optional_modules"] # list of optional modules that have not been selected
for mod, mod_val in self._currently_selected_modules.items():
self._load_module_params(mod, mod_val)
def _add_new_params_and_modules(self, input_param_dict):
""" this method adopts the current list of mandatory/optinal modules/parameters i.e. when a new module is loaded
the input_parameter_dict is importet from the corresponding module file"""
for mandatory_param in input_param_dict["input_parameters_mandatory"]:
if not mandatory_param in self._current_mandatory_params:
self._current_mandatory_params.append(mandatory_param)
if mandatory_param in self._current_optional_params:
self._current_optional_params.remove(mandatory_param)
for optional_param in input_param_dict["input_parameters_optional"]:
if not optional_param in self._current_mandatory_params:
if not optional_param in self._current_optional_params:
self._current_optional_params.append(optional_param)
for mandatory_module in input_param_dict["mandatory_modules"]:
if not mandatory_module in self._current_mandatory_modules:
self._current_mandatory_modules.append(mandatory_module)
if mandatory_module in self._current_optional_modules:
self._current_optional_modules.remove(mandatory_module)
for optional_module in input_param_dict["optional_modules"]:
if not optional_module in self._current_mandatory_modules:
if not optional_module in self._current_optional_modules:
self._current_optional_modules.append(optional_module)
def _load_module_params(self, module_param, module_param_value):
""" this method loads new module parameters when a module has been selected and looks through the whole inheritance tree
:param module_param: module specification parameter
:param module_param_value: selected module name"""
print("")
print(f"load parameters for module {module_param_value}!")
module_dict = MODULE_PARAM_TO_DICT_LOAD[module_param]()
input_param_dict = load_module_parameters(module_dict, module_param_value)
self._add_new_params_and_modules(input_param_dict)
inherit_class = input_param_dict["inherit"]
while inherit_class is not None:
if inherit_class.endswith("Base"): # TODO!
if not inherit_class.startswith("Request"):
base_p = list(module_dict.values())[0][0].split(".")[:-1]
base_p.append(inherit_class)
base_p = ".".join(base_p)
module_dict[inherit_class] = (base_p, inherit_class)
else:
module_dict[inherit_class] = ("src.demand.TravelerModels", inherit_class)
try:
new_input_param_dict = load_module_parameters(module_dict, inherit_class)
except ModuleNotFoundError: # TODO
if inherit_class.endswith("Base") and not inherit_class.startswith("Request"): # TODO!
base_p = list(module_dict.values())[0][0].split(".")[:-2]
base_p.append(inherit_class)
base_p = ".".join(base_p)
module_dict[inherit_class] = (base_p, inherit_class)
new_input_param_dict = load_module_parameters(module_dict, inherit_class)
else:
raise ModuleNotFoundError(f"no module named {base_p}")
print(f" -> inherit {inherit_class} : {new_input_param_dict['doc']}")
self._add_new_params_and_modules(new_input_param_dict)
inherit_class = new_input_param_dict["inherit"]
# if module_param in self._current_mandatory_modules:
# self._current_mandatory_modules.remove(module_param)
# if module_param in self._current_optional_modules:
# self._current_optional_modules.remove(module_param)
print("==========================================================")
def select_module(self, module_param, module_param_value):
""" this method should be called if a value for a module is selected in the GUI
TODO reselction currently not possible
:param module_param: module specification parameter
:param module_param_value: selected module name"""
if self._currently_selected_modules.get(module_param) is not None:
print(f"{module_param} re-selected")
self._currently_selected_modules[module_param] = module_param_value
self._reset_module_init()
else:
self._currently_selected_modules[module_param] = module_param_value
self._load_module_params(module_param, module_param_value)
# module_dict = MODULE_PARAM_TO_DICT_LOAD[param]()
# input_param_dict = load_module_parameters(module_dict, param_value)
# print(input_param_dict)
def select_param(self, param, param_value):
""" this method should be called if a value for a parameter is selected in the GUI
:param param: parameter name
:param param_value: selected parameter value"""
print(f"Select {param_value} for parameter {param}")
if not param in self._current_mandatory_params and not param in self._current_optional_params \
and self._currently_selected_parameters.get(param) is None:
raise EnvironmentError(f"{param} not defined or does not have to be specified!")
self._currently_selected_parameters[param] = param_value
# if param in self._current_mandatory_params:
# self._current_mandatory_params.remove(param)
# if param in self._current_optional_params:
# self._current_optional_params.remove(param)
def create_filled_scenario_df(self):
""" this function creates a dataframe from all selected modules and parameters
a dataframe is only returned if all mandatory parameters and modules have been selected
TODO this function doesnt save the file to a csv yet
:return: path to sc_df"""
print("Created Scenario Table:")
sc_df_list = []
for p, v in self._currently_selected_modules.items():
sc_df_list.append( {"Parameter" : p, "Value": v})
for p, v in self._currently_selected_parameters.items():
if p == "study_name":
continue
sc_df_list.append( {"Parameter" : p, "Value": v})
sc_df = pd.DataFrame(sc_df_list)
study_name = self._currently_selected_parameters["study_name"]
scenario_path = create_study_directories(study_name)
f_p = os.path.join(scenario_path, "scenario_creator_config.csv")
sc_df.to_csv(f_p, index = False)
return f_p
def create_shell_scenario_df(self):
""" this function returns an empty dataframe of all parameters according to the selected modules
it doesnt return anything in case a mandatory module is not specified yet
:return: dataframe with columsn Parameter and Value (Value entries are filled with corresponding doc-strings of the parameters)"""
print("")
print("___________________________________________________")
print("")
if len(self._current_mandatory_modules) != 0:
print("To be specified: {}".format(self._current_mandatory_modules))
return
if len(self._current_optional_modules) != 0:
print("Not specified modules: {}".format(self._current_optional_modules))
print(" -> input parameters for these modules are not included in the shell scenario table!")
print("")
print("Shell scenario table:")
sc_df_list = []
for p, v in self._currently_selected_modules.items():
sc_df_list.append( {"Parameter" : p, "Value": v})
for p, v in self._currently_selected_parameters.items():
sc_df_list.append( {"Parameter" : p, "Value": v})
for p in self._current_mandatory_params + self._current_optional_params:
v = f"TO BE SPECIFIED: {parameter_docs[p]} | Type {parameter_types[p]}"
if parameter_defaults.get(p) is not None:
v += " | Default {}".format(parameter_defaults[p])
if p in self._current_optional_params:
v = "(OPTIONAL) " + v
sc_df_list.append( {"Parameter" : p, "Value": v})
sc_df = pd.DataFrame(sc_df_list)
print(sc_df)
return sc_df
def get_current_mandatory_and_optional_modules(self) -> Tuple[Dict[str, Parameter], Dict[str, Parameter]]:
""" returns two dictionaries specifing currently selectable mandatory and optional parameters
each dictionary describes the module parameter name -> Paramter object, which collects all information regarding the paramter
:return: current mandatory module dict, current optional module dict"""
man_module_dict = {}
op_module_dict = {}
for param in self._current_mandatory_modules:
man_module_dict[param] = self.parameter_dict[param]
for param in self._current_optional_modules:
op_module_dict[param] = self.parameter_dict[param]
return man_module_dict, op_module_dict
def get_current_mandatory_and_optional_parameters(self) -> Tuple[Dict[str, Parameter], Dict[str, Parameter]]:
""" returns two dictionaries specifing currently selectable mandatory and optional parameters
each dictionary describes the parameter name -> Paramteer object, which collects all information regarding the parameter
:return: current mandatory module dict, current optional module dict"""
man_param_dict = {}
op_param_dict = {}
for param in self._current_mandatory_params:
man_param_dict[param] = self.parameter_dict[param]
for param in self._current_optional_params:
op_param_dict[param] = self.parameter_dict[param]
return man_param_dict, op_param_dict
def print_current_mandatory_and_optional_modules(self):
print("Mandatory Modules:")
print("")
for param in self._current_mandatory_modules:
desc = parameter_docs[param]
print(f"Parameter Value: {param}")
print(f"Description: {desc}")
if MODULE_PARAM_TO_DICT_LOAD.get(param) is not None:
options = list(MODULE_PARAM_TO_DICT_LOAD[param]().keys())
else:
options = []
print(f"Options: {options}")
print("")
print("")
print("Optional Modules:")
print("")
for param in self._current_optional_modules:
desc = parameter_docs[param]
print(f"Parameter Value: {param}")
print(f"Description: {desc}")
if MODULE_PARAM_TO_DICT_LOAD.get(param) is not None:
options = list(MODULE_PARAM_TO_DICT_LOAD[param]().keys())
else:
options = []
print(f"Options: {options}")
print("==========================================================")
def print_current_mandatory_and_optional_parameters(self):
print("Mandatory Parameters:")
print("")
for param in self._current_mandatory_params:
desc = parameter_docs[param]
print(f"Parameter Value: {param}")
print(f"Description: {desc}")
print("Options: TBD!")
print("")
print("")
print("Optional Parameters:")
print("")
for param in self._current_optional_params:
desc = parameter_docs[param]
print(f"Parameter Value: {param}")
print(f"Description: {desc}")
print("Options: TBD!")
print("")
print("==========================================================")
if __name__=="__main__":
sc = ScenarioCreator()
sc.print_current_mandatory_and_optional_modules()
sc.print_current_mandatory_and_optional_parameters()
print("_________________________________________________")
sc.select_module("network_type", "NetworkBasic")
sc.print_current_mandatory_and_optional_modules()
sc.print_current_mandatory_and_optional_parameters()
print("_________________________________________________")
sc.select_module("op_module", "PoolingIRSOnly")
sc.print_current_mandatory_and_optional_modules()
sc.print_current_mandatory_and_optional_parameters()
sc.select_module("sim_env", "ImmediateDecisionsSimulation")
sc.select_module("rq_type", "BasicRequest")
sc.create_shell_scenario_df()
sc.select_param('scenario_name', "Test_Scenario")
sc.select_param('start_time', 0)
sc.select_param("end_time", 3600)
sc.select_param("nr_mod_operators", 1)
sc.select_param("random_seed", 123)
sc.select_param("network_name", "TestNetwork")
sc.select_param("demand_name", "TestDemand")
sc.select_param("rq_file", "TestRqFile")
sc.select_param("op_vr_control_func_dict", "inputForObjFunc")
sc_df = sc.create_filled_scenario_df()
sc_df.to_csv(r'C:\Users\ge37ser\Documents\Coding\TUM_VT_FleetSimulation\tum-vt-fleet-simulation\FleetPy\studies\SUMO_Grafing_test\scenarios\test_cfg.csv', index=False)