-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
114 lines (80 loc) · 3.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# -*- coding: utf-8 -*-
"""
Created on Mon May 31 14:12:00 2021
@author: Dyari M.shareef
"""
import pandas as pd
import librosa
import numpy as np
annotatedData=pd.read_csv("meta-data.csv")
Xtrain=annotatedData['filename']
ytrain=annotatedData['category']
Xtest=annotatedData['filename-test'].dropna()
ytest=annotatedData['category-test'].dropna()
def features_extractor(file):
audio, sample_rate = librosa.load(file, res_type='kaiser_fast')
mfccs_features = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)
mfccs_scaled_features = np.mean(mfccs_features.T,axis=0)
return mfccs_scaled_features
def MFCCExctracting(arg):
extracted_features=[]
for row in arg:
featrs=features_extractor('audio\\'+row)
extracted_features.append(featrs)
return extracted_features
Xtrain=MFCCExctracting(Xtrain)
Xtrain=np.array(Xtrain)
ytrain=np.array(ytrain)
Xtest=MFCCExctracting(Xtest)
Xtest=np.array(Xtest)
ytest=np.array(ytest)
from tensorflow.keras.utils import to_categorical
from sklearn.preprocessing import LabelEncoder
labelencoder=LabelEncoder()
ytrain=to_categorical(labelencoder.fit_transform(ytrain))
ytest=to_categorical(labelencoder.fit_transform(ytest))
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Dropout,Activation,Flatten
from tensorflow.keras.optimizers import Adam
from sklearn import metrics
### No of classes
num_labels=50
model=Sequential()
###first layer
model.add(Dense(400,input_shape=(40,)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
###second layer
model.add(Dense(400))
model.add(Activation('relu'))
model.add(Dropout(0.5))
###third layer
model.add(Dense(400))
model.add(Activation('relu'))
model.add(Dropout(0.5))
###final layer
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',metrics=['accuracy'],optimizer='adam')
## Trianing my model
from tensorflow.keras.callbacks import ModelCheckpoint
from datetime import datetime
checkpointer = ModelCheckpoint(filepath='audio_classification.hdf5', verbose=1, save_best_only=True)
start = datetime.now()
model.fit(Xtrain, ytrain, validation_data=(Xtest, ytest), batch_size=32, epochs=950, callbacks=[checkpointer], verbose=1)
duration = datetime.now() - start
print("Training completed in time: ", duration)
test_accuracy=model.evaluate(Xtest,ytest,verbose=0)
print('The accuracy: ',test_accuracy[1])
model.predict_classes(Xtest)
filename="audio\\1-43382-A-1.wav"
audio, sample_rate = librosa.load(filename, res_type='kaiser_fast')
#librosa.get_duration(filename='cats_dogs\\cat_32.wav')
mfccs_features = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)
mfccs_scaled_features = np.mean(mfccs_features.T,axis=0)
mfccs_scaled_features=mfccs_scaled_features.reshape(1,-1)
predicted_label=model.predict_classes(mfccs_scaled_features)
prediction_class = labelencoder.inverse_transform(predicted_label)
prediction_class[0]