-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathmain.py
72 lines (58 loc) · 1.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Lane Lines Detection pipeline
Usage:
main.py [--video] INPUT_PATH OUTPUT_PATH
Options:
-h --help show this screen
--video process video file instead of image
"""
import numpy as np
import matplotlib.image as mpimg
import cv2
from docopt import docopt
from IPython.display import HTML, Video
from moviepy.editor import VideoFileClip
from CameraCalibration import CameraCalibration
from Thresholding import *
from PerspectiveTransformation import *
from LaneLines import *
class FindLaneLines:
""" This class is for parameter tunning.
Attributes:
...
"""
def __init__(self):
""" Init Application"""
self.calibration = CameraCalibration('camera_cal', 9, 6)
self.thresholding = Thresholding()
self.transform = PerspectiveTransformation()
self.lanelines = LaneLines()
def forward(self, img):
out_img = np.copy(img)
img = self.calibration.undistort(img)
img = self.transform.forward(img)
img = self.thresholding.forward(img)
img = self.lanelines.forward(img)
img = self.transform.backward(img)
out_img = cv2.addWeighted(out_img, 1, img, 0.6, 0)
out_img = self.lanelines.plot(out_img)
return out_img
def process_image(self, input_path, output_path):
img = mpimg.imread(input_path)
out_img = self.forward(img)
mpimg.imsave(output_path, out_img)
def process_video(self, input_path, output_path):
clip = VideoFileClip(input_path)
out_clip = clip.fl_image(self.forward)
out_clip.write_videofile(output_path, audio=False)
def main():
args = docopt(__doc__)
input = args['INPUT_PATH']
output = args['OUTPUT_PATH']
findLaneLines = FindLaneLines()
if args['--video']:
findLaneLines.process_video(input, output)
else:
findLaneLines.process_image(input, output)
if __name__ == "__main__":
main()