-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
132 lines (98 loc) · 7.93 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures",
out.width = "100%"
)
```
# IOBR: Immuno-Oncology Biological Research
IOBR is an R package to perform comprehensive analysis of tumor microenvironment and signatures for immuno-oncology.
### 1.Introduction
- 1. IOBR collects 255 published signature gene sets, involving tumor microenvironment, tumor metabolism, m6A, exosomes, microsatellite instability, and tertiary lymphoid structure. Running the function `signature_collection_citation` to attain the source papers. The function `signature_collection` returns the detail signature genes of all given signatures.
- 2. IOBR integrates 8 published methodologies decoding tumor microenvironment (TME) contexture: `CIBERSORT`, `TIMER`, `xCell`, `MCPcounter`, `ESITMATE`, `EPIC`, `IPS`, `quanTIseq`;
- 3. IOBR adopts three computational methods to calculate the signature score, comprising `PCA`,`z-score`, and `ssGSEA`;
- 4. IOBR integrates multiple approaches for variable transition, visualization, batch survival analysis, feature selection, and statistical analysis.
- 5. IOBR also integrates methods for batch visualization of subgroup characteristics.
#### IOBR package workflow
![IOBR logo](./man/figures/IOBR-Workflow.png)
### 2.Installation
It is essential that you have R 3.6.3 or above already installed on your computer or server. IOBR utilizes many other R packages that are currently available from CRAN, Bioconductor and GitHub. Before installing IOBR, please install all dependencies by executing the following command in R console:
The dependencies includs `tibble`, `survival`, `survminer`, `limma`, `limSolve`, `GSVA`, `e1071`, `preprocessCore`, `ggplot2` and `ggpubr`.
```{r}
# options("repos"= c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
# options(BioC_mirror="http://mirrors.tuna.tsinghua.edu.cn/bioconductor/")
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
depens<-c('tibble', 'survival', 'survminer', 'sva', 'limma', "DESeq2","devtools",
'limSolve', 'GSVA', 'e1071', 'preprocessCore', 'ggplot2', "biomaRt",
'ggpubr', "devtools", "tidyHeatmap", "caret", "glmnet", "ppcor", "timeROC","pracma")
for(i in 1:length(depens)){
depen<-depens[i]
if (!requireNamespace(depen, quietly = TRUE))
BiocManager::install(depen)
}
if (!requireNamespace("EPIC", quietly = TRUE))
devtools::install_github("GfellerLab/EPIC", ref="master")
if (!requireNamespace("MCPcounter", quietly = TRUE))
devtools::install_github("ebecht/MCPcounter",ref="master", subdir="Source")
if (!requireNamespace("estimate", quietly = TRUE)){
rforge <- "http://r-forge.r-project.org"
install.packages("estimate", repos=rforge, dependencies=TRUE)
}
```
The package is not yet on CRAN or Bioconductor. You can install it from Github:
```{r}
if (!requireNamespace("IOBR", quietly = TRUE))
devtools::install_github("IOBR/IOBR",ref="master")
```
Library R packages
```{r,message = FALSE, warning=FALSE}
library(IOBR)
```
### 3.Manual
IOBR pipeline diagram below outlines the data processing flow of this package, and detailed guidance of how to use IOBR could be found in the [GitHub vignette](https://github.com/IOBR/IOBR/tree/master/vignettes) or [HTML vignette](https://iobr.github.io/IOBR/IOBR-VIGNETTE.html).
![IOBR logo](./man/figures/IOBR-Package.png)
## 3.Availabie methods to decode TME contexture
```{r}
tme_deconvolution_methods
# Return available parameter options of TME deconvolution.
```
If you use this package in your work, please cite both our package and the method(s) you are using.
#### Licenses of the deconvolution methods
| method | license | citation |
|--------|---------|----------|
| [CIBERSORT](https://cibersort.stanford.edu/) | free for non-commerical use only | Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., … Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457. https://doi.org/10.1038/nmeth.3337 |
| [ESTIMATE](https://bioinformatics.mdanderson.org/public-software/estimate/) | free ([GPL2.0]( https://bioinformatics.mdanderson.org/estimate/)) | Vegesna R, Kim H, Torres-Garcia W, ..., Verhaak R. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications 4, 2612. http://doi.org/10.1038/ncomms3612 |
| [quanTIseq](http://icbi.at/software/quantiseq/doc/index.html) | free ([BSD](https://github.com/icbi-lab/immunedeconv/blob/master/LICENSE.md)) | Finotello, F., Mayer, C., Plattner, C., Laschober, G., Rieder, D., Hackl, H., ..., Sopper, S. (2019). Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome medicine, 11(1), 34. https://doi.org/10.1186/s13073-019-0638-6 |
| [TIMER](http://cistrome.org/TIMER/) | free ([GPL 2.0](http://cistrome.org/TIMER/download.html)) | Li, B., Severson, E., Pignon, J.-C., Zhao, H., Li, T., Novak, J., … Liu, X. S. (2016). Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biology, 17(1), 174. https://doi.org/10.1186/s13059-016-1028-7 |
| [IPS](https://github.com/icbi-lab/Immunophenogram) | free ([BSD](https://github.com/icbi-lab/Immunophenogram/blob/master/LICENSE)) | P. Charoentong et al., Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Reports 18, 248-262 (2017). https://doi.org/10.1016/j.celrep.2016.12.019 |
| [MCPCounter](https://github.com/ebecht/MCPcounter) | free ([GPL 3.0](https://github.com/ebecht/MCPcounter/blob/master/Source/License)) | Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., … de Reyniès, A. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology, 17(1), 218. https://doi.org/10.1186/s13059-016-1070-5 |
| [xCell](http://xcell.ucsf.edu/) | free ([GPL 3.0](https://github.com/dviraran/xCell/blob/master/DESCRIPTION)) | Aran, D., Hu, Z., & Butte, A. J. (2017). xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biology, 18(1), 220. https://doi.org/10.1186/s13059-017-1349-1 |
| [EPIC](https://gfellerlab.shinyapps.io/EPIC_1-1/) | free for non-commercial use only ([Academic License](https://github.com/GfellerLab/EPIC/blob/master/LICENSE)) | Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E., & Gfeller, D. (2017). Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. ELife, 6, e26476. https://doi.org/10.7554/eLife.26476 |
## 4.Availabie methods to estimate signatures
```{r}
signature_score_calculation_methods
# Return available parameter options of signature estimation.
```
#### Licenses of the signature-esitmation method
| method | license | citation |
|--------|---------|----------|
| [GSVA](http://www.bioconductor.org/packages/release/bioc/html/GSVA.html) | free ([GPL (>= 2)](https://github.com/rcastelo/GSVA)) | Hänzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics, 14, 7. doi: 10.1186/1471-2105-14-7, http://www.biomedcentral.com/1471-2105/14/7 |
## 5.Signature collection
```{r}
#References of collected signatures
signature_collection_citation[!duplicated(signature_collection_citation$Journal),]
#signature groups
sig_group[1:3]
```
References
---------
DQ Zeng, ZL Ye, RF Shen, GC Yu, …, WJ Liao*, IOBR: Multi-omics Immuno-Oncology Biological Research to decode tumor microenvironment and signatures. bioRxiv, 2020.2012.2014.422647 (2020).[doi: 10.1101/2020.12.14.422647](https://www.biorxiv.org/content/10.1101/2020.12.14.422647v1)
Reporting bugs
---------
Please report bugs to the [Github issues page](https://github.com/IOBR/IOBR/issues)
E-mail any questions to [email protected]