-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathInnerDecoder.py
47 lines (31 loc) · 1.06 KB
/
InnerDecoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding: utf-8 -*-
from utils import *
from AttentionBlockConditional import *
class TransformerDecoderInner(nn.Module) :
def __init__(self, D):
super(TransformerDecoderInner, self).__init__()
self.D = D
self.ConditionalRowAttention = AttentionBlockConditional('row',D)
def forward(self, input, ctx_encoder_decoder, j) :
batch,row,col,_ = input.shape
mask = torch.ones(input.shape[:-1])
mask[:,:,j:] = -1e9
out = self.ConditionalRowAttention(input, ctx_encoder_decoder, mask)
return out
class InnerDecoder(nn.Module) :
"""
Generate a row, one pixel at a time
"""
def __init__(self, D):
super(InnerDecoder, self).__init__()
self.TransformerDecoderInner_Layer1 = TransformerDecoderInner(D)
def forward(self, emb_x_s_c, ctx_encoder_decoder, j):
"""
=INPUT=
=RETURN=
z = o + ShiftRight(e)
h = MaskedRow(z)
p(xij) = Dense(h)
"""
out = self.TransformerDecoderInner_Layer1(emb_x_s_c, ctx_encoder_decoder, j)
return out