-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathstmt.c
423 lines (363 loc) · 11.4 KB
/
stmt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#include "defs.h"
#include "data.h"
#include "decl.h"
#include "expr.h"
#include "misc.h"
#include "opt.h"
#include "parse.h"
#include "stmt.h"
#include "sym.h"
#include "tree.h"
#include "types.h"
// Parsing of statements
// Copyright (c) 2019 Warren Toomey, GPL3
// Prototypes
static struct ASTnode *single_statement(void);
// compound_statement: // empty, i.e. no statement
// | statement
// | statement statements
// ;
//
// statement: declaration
// | expression_statement
// | function_call
// | if_statement
// | while_statement
// | for_statement
// | return_statement
// ;
// if_statement: if_head
// | if_head 'else' statement
// ;
//
// if_head: 'if' '(' true_false_expression ')' statement ;
//
// Parse an IF statement including any
// optional ELSE clause and return its AST
static struct ASTnode *if_statement(void) {
struct ASTnode *condAST, *trueAST, *falseAST = NULL;
// Ensure we have 'if' '('
match(T_IF, "if");
lparen();
// Parse the following expression
// and the ')' following. Force a
// non-boolean operation to be boolean.
condAST = binexpr(0);
if (condAST->op != A_LOGOR && condAST->op != A_LOGAND &&
(condAST->op < A_EQ || condAST->op > A_GE))
condAST =
mkastunary(A_TOBOOL, condAST->type, condAST->ctype, condAST, NULL, 0);
rparen();
// Get the AST for the statement
trueAST = single_statement();
// If we have an 'else', skip it
// and get the AST for the statement
if (Token.token == T_ELSE) {
scan(&Token);
falseAST = single_statement();
}
// Build and return the AST for this statement
return (mkastnode(A_IF, P_NONE, NULL, condAST, trueAST, falseAST, NULL, 0));
}
// while_statement: 'while' '(' true_false_expression ')' statement ;
//
// Parse a WHILE statement and return its AST
static struct ASTnode *while_statement(void) {
struct ASTnode *condAST, *bodyAST;
// Ensure we have 'while' '('
match(T_WHILE, "while");
lparen();
// Parse the following expression
// and the ')' following. Force a
// non-boolean operation to be boolean.
condAST = binexpr(0);
if (condAST->op != A_LOGOR && condAST->op != A_LOGAND &&
(condAST->op < A_EQ || condAST->op > A_GE))
condAST =
mkastunary(A_TOBOOL, condAST->type, condAST->ctype, condAST, NULL, 0);
rparen();
// Get the AST for the statement.
// Update the loop depth in the process
Looplevel++;
bodyAST = single_statement();
Looplevel--;
// Build and return the AST for this statement
return (mkastnode(A_WHILE, P_NONE, NULL, condAST, NULL, bodyAST, NULL, 0));
}
// for_statement: 'for' '(' expression_list ';'
// true_false_expression ';'
// expression_list ')' statement ;
//
// Parse a FOR statement and return its AST
static struct ASTnode *for_statement(void) {
struct ASTnode *condAST, *bodyAST;
struct ASTnode *preopAST, *postopAST;
struct ASTnode *tree;
// Ensure we have 'for' '('
match(T_FOR, "for");
lparen();
// Get the pre_op expression and the ';'
preopAST = expression_list(T_SEMI);
semi();
// Get the condition and the ';'. Force a
// non-boolean operation to be boolean.
condAST = binexpr(0);
if (condAST->op != A_LOGOR && condAST->op != A_LOGAND &&
(condAST->op < A_EQ || condAST->op > A_GE))
condAST =
mkastunary(A_TOBOOL, condAST->type, condAST->ctype, condAST, NULL, 0);
semi();
// Get the post_op expression and the ')'
postopAST = expression_list(T_RPAREN);
rparen();
// Get the statement which is the body
// Update the loop depth in the process
Looplevel++;
bodyAST = single_statement();
Looplevel--;
// Glue the statement and the postop tree
tree = mkastnode(A_GLUE, P_NONE, NULL, bodyAST, NULL, postopAST, NULL, 0);
// Make a WHILE loop with the condition and this new body
tree = mkastnode(A_WHILE, P_NONE, NULL, condAST, NULL, tree, NULL, 0);
// And glue the preop tree to the A_WHILE tree
return (mkastnode(A_GLUE, P_NONE, NULL, preopAST, NULL, tree, NULL, 0));
}
// return_statement: 'return' '(' expression ')' ;
//
// Parse a return statement and return its AST
static struct ASTnode *return_statement(void) {
struct ASTnode *tree= NULL;
// Ensure we have 'return'
match(T_RETURN, "return");
// See if we have a return value
if (Token.token == T_LPAREN) {
// Can't return a value if function returns P_VOID
if (Functionid->type == P_VOID)
fatal("Can't return from a void function");
// Skip the left parenthesis
lparen();
// Parse the following expression
tree = binexpr(0);
// Ensure this is compatible with the function's type
tree = modify_type(tree, Functionid->type, Functionid->ctype, 0);
if (tree == NULL)
fatal("Incompatible type to return");
// Get the ')'
rparen();
}
// Add on the A_RETURN node
tree = mkastunary(A_RETURN, P_NONE, NULL, tree, NULL, 0);
// Get the ';'
semi();
return (tree);
}
// break_statement: 'break' ;
//
// Parse a break statement and return its AST
static struct ASTnode *break_statement(void) {
if (Looplevel == 0 && Switchlevel == 0)
fatal("no loop or switch to break out from");
scan(&Token);
semi();
return (mkastleaf(A_BREAK, P_NONE, NULL, NULL, 0));
}
// continue_statement: 'continue' ;
//
// Parse a continue statement and return its AST
static struct ASTnode *continue_statement(void) {
if (Looplevel == 0)
fatal("no loop to continue to");
scan(&Token);
semi();
return (mkastleaf(A_CONTINUE, P_NONE, NULL, NULL, 0));
}
// Parse a switch statement and return its AST
static struct ASTnode *switch_statement(void) {
struct ASTnode *left, *body, *n, *c;
struct ASTnode *casetree = NULL, *casetail;
int inloop = 1, casecount = 0;
int seendefault = 0;
int ASTop, casevalue;
// Skip the 'switch' and '('
scan(&Token);
lparen();
// Get the switch expression, the ')' and the '{'
left = binexpr(0);
rparen();
lbrace();
// Ensure that this is of int type
if (!inttype(left->type))
fatal("Switch expression is not of integer type");
// If its type P_CHAR, widen it to P_INT
if (left->type == P_CHAR)
left= mkastunary(A_WIDEN, P_INT, NULL, left, NULL, 0);
// Build an A_SWITCH subtree with the expression as the child
n = mkastunary(A_SWITCH, P_NONE, NULL, left, NULL, 0);
// Now parse the cases
Switchlevel++;
while (inloop) {
switch (Token.token) {
// Leave the loop when we hit a '}'
case T_RBRACE:
if (casecount == 0)
fatal("No cases in switch");
inloop = 0;
break;
case T_CASE:
case T_DEFAULT:
// Ensure this isn't after a previous 'default'
if (seendefault)
fatal("case or default after existing default");
// Set the AST operation. Scan the case value if required
if (Token.token == T_DEFAULT) {
ASTop = A_DEFAULT;
seendefault = 1;
scan(&Token);
} else {
ASTop = A_CASE;
scan(&Token);
left = binexpr(0);
// Ensure the case value is an integer literal
if (left->op != A_INTLIT)
fatal("Expecting integer literal for case value");
casevalue = left->a_intvalue;
// Walk the list of existing case values to ensure
// that there isn't a duplicate case value
for (c = casetree; c != NULL; c = c->right)
if (casevalue == c->a_intvalue)
fatal("Duplicate case value");
}
// Scan the ':' and increment the casecount
match(T_COLON, ":");
casecount++;
// If the next token is a T_CASE, the existing case will fall
// into the next case. Otherwise, parse the case body.
if (Token.token == T_CASE)
body = NULL;
else
body = compound_statement(1);
// Build a sub-tree with any compound statement as the left child
// and link it in to the growing A_CASE tree
if (casetree == NULL) {
casetree = casetail =
mkastunary(ASTop, P_NONE, NULL, body, NULL, casevalue);
} else {
casetail->right =
mkastunary(ASTop, P_NONE, NULL, body, NULL, casevalue);
casetail->rightid= casetail->right->nodeid;
casetail = casetail->right;
}
break;
default:
fatals("Unexpected token in switch", Tstring[Token.token]);
}
}
Switchlevel--;
// We have a sub-tree with the cases and any default. Put the
// case count into the A_SWITCH node and attach the case tree.
n->a_intvalue = casecount;
n->right = casetree;
n->rightid = casetree->nodeid;
rbrace();
return (n);
}
// Parse a single statement and return its AST.
static struct ASTnode *single_statement(void) {
struct ASTnode *stmt;
struct symtable *ctype;
int linenum= Line;
switch (Token.token) {
case T_SEMI:
// An empty statement
semi();
break;
case T_LBRACE:
// We have a '{', so this is a compound statement
lbrace();
stmt = compound_statement(0);
stmt->linenum= linenum;
rbrace();
return (stmt);
case T_IDENT:
// We have to see if the identifier matches a typedef.
// If not, treat it as an expression.
// Otherwise, fall down to the parse_type() call.
if (findtypedef(Text) == NULL) {
stmt = binexpr(0);
stmt->linenum= linenum;
semi();
return (stmt);
}
case T_CHAR:
case T_INT:
case T_LONG:
case T_STRUCT:
case T_UNION:
case T_ENUM:
case T_TYPEDEF:
// The beginning of a variable declaration list.
declaration_list(&ctype, V_LOCAL, T_SEMI, T_EOF, &stmt);
semi();
return (stmt); // Any assignments from the declarations
case T_IF:
stmt= if_statement(); stmt->linenum= linenum; return(stmt);
case T_WHILE:
stmt= while_statement(); stmt->linenum= linenum; return(stmt);
case T_FOR:
stmt= for_statement(); stmt->linenum= linenum; return(stmt);
case T_RETURN:
stmt= return_statement(); stmt->linenum= linenum; return(stmt);
case T_BREAK:
stmt= break_statement(); stmt->linenum= linenum; return(stmt);
case T_CONTINUE:
stmt= continue_statement(); stmt->linenum= linenum; return(stmt);
case T_SWITCH:
stmt= switch_statement(); stmt->linenum= linenum; return(stmt);
default:
// For now, see if this is an expression.
// This catches assignment statements.
stmt = binexpr(0);
stmt->linenum= linenum;
semi();
return (stmt);
}
return (NULL); // Keep -Wall happy
}
// Parse a compound statement
// and return its AST. If inswitch is true,
// we look for a '}', 'case' or 'default' token
// to end the parsing. Otherwise, look for
// just a '}' to end the parsing.
struct ASTnode *compound_statement(int inswitch) {
struct ASTnode *left = NULL;
struct ASTnode *tree;
while (1) {
// Leave if we've hit the end token. We do this first to allow
// an empty compound statement
if (Token.token == T_RBRACE)
return (left);
if (inswitch && (Token.token == T_CASE || Token.token == T_DEFAULT))
return (left);
// Parse a single statement
tree = single_statement();
// For each new tree, either save it in left
// if left is empty, or glue the left and the
// new tree together
if (tree != NULL) {
if (left == NULL)
left = tree;
else {
left = mkastnode(A_GLUE, P_NONE, NULL, left, NULL, tree, NULL, 0);
// To conserve memory, we try to optimise the single statement tree.
// Then we serialise the tree and free it. We set the right pointer
// in left NULL; this will stop the serialiser from descending into
// the tree that we already serialised.
tree = optimise(tree);
serialiseAST(tree);
freetree(tree, 0);
left->right=NULL;
}
}
}
return (NULL); // Keep -Wall happy
}