forked from schollz/closestmatch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclosestmatch.go
executable file
·346 lines (309 loc) · 8.74 KB
/
closestmatch.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
package closestmatch
import (
"compress/gzip"
"encoding/json"
"math/rand"
"os"
"sort"
"strings"
"sync"
)
// ClosestMatch is the structure that contains the
// substring sizes and carrys a map of the substrings for
// easy lookup
type ClosestMatch struct {
SubstringSizes []int
SubstringToID map[string]map[uint32]struct{}
ID map[uint32]IDInfo
mux sync.Mutex
}
// IDInfo carries the information about the keys
type IDInfo struct {
Key string
NumSubstrings int
}
// New returns a new structure for performing closest matches
func New(possible []string, subsetSize []int) *ClosestMatch {
cm := new(ClosestMatch)
cm.SubstringSizes = subsetSize
cm.SubstringToID = make(map[string]map[uint32]struct{})
cm.ID = make(map[uint32]IDInfo)
for i, s := range possible {
substrings := cm.splitWord(strings.ToLower(s))
cm.ID[uint32(i)] = IDInfo{Key: s, NumSubstrings: len(substrings)}
for substring := range substrings {
if _, ok := cm.SubstringToID[substring]; !ok {
cm.SubstringToID[substring] = make(map[uint32]struct{})
}
cm.SubstringToID[substring][uint32(i)] = struct{}{}
}
}
return cm
}
// Load can load a previously saved ClosestMatch object from disk
func Load(filename string) (*ClosestMatch, error) {
cm := new(ClosestMatch)
f, err := os.Open(filename)
defer f.Close()
if err != nil {
return cm, err
}
w, err := gzip.NewReader(f)
if err != nil {
return cm, err
}
err = json.NewDecoder(w).Decode(&cm)
return cm, err
}
// Add more words to ClosestMatch structure
func (cm *ClosestMatch) Add(possible []string) {
cm.mux.Lock()
for i, s := range possible {
substrings := cm.splitWord(strings.ToLower(s))
cm.ID[uint32(i)] = IDInfo{Key: s, NumSubstrings: len(substrings)}
for substring := range substrings {
if _, ok := cm.SubstringToID[substring]; !ok {
cm.SubstringToID[substring] = make(map[uint32]struct{})
}
cm.SubstringToID[substring][uint32(i)] = struct{}{}
}
}
cm.mux.Unlock()
}
// Save writes the current ClosestSave object as a gzipped JSON file
func (cm *ClosestMatch) Save(filename string) error {
f, err := os.Create(filename)
if err != nil {
return err
}
defer f.Close()
w := gzip.NewWriter(f)
defer w.Close()
enc := json.NewEncoder(w)
// enc.SetIndent("", " ")
return enc.Encode(cm)
}
func (cm *ClosestMatch) worker(id int, jobs <-chan job, results chan<- result) {
for j := range jobs {
m := make(map[string]int)
cm.mux.Lock()
if ids, ok := cm.SubstringToID[j.substring]; ok {
weight := 1000 / len(ids)
for id := range ids {
if _, ok2 := m[cm.ID[id].Key]; !ok2 {
m[cm.ID[id].Key] = 0
}
m[cm.ID[id].Key] += 1 + 1000/len(cm.ID[id].Key) + weight
}
}
cm.mux.Unlock()
results <- result{m: m}
}
}
type job struct {
substring string
}
type result struct {
m map[string]int
}
func (cm *ClosestMatch) match(searchWord string) map[string]int {
searchSubstrings := cm.splitWord(searchWord)
searchSubstringsLen := len(searchSubstrings)
jobs := make(chan job, searchSubstringsLen)
results := make(chan result, searchSubstringsLen)
workers := 8
for w := 1; w <= workers; w++ {
go cm.worker(w, jobs, results)
}
for substring := range searchSubstrings {
jobs <- job{substring: substring}
}
close(jobs)
m := make(map[string]int)
for a := 1; a <= searchSubstringsLen; a++ {
r := <-results
for key := range r.m {
if _, ok := m[key]; ok {
m[key] += r.m[key]
} else {
m[key] = r.m[key]
}
}
}
return m
}
// Closest searches for the `searchWord` and returns the closest match
func (cm *ClosestMatch) Closest(searchWord string) string {
for _, pair := range rankByWordCount(cm.match(searchWord)) {
return pair.Key
}
return ""
}
// ClosestN searches for the `searchWord` and returns the n closests matches
func (cm *ClosestMatch) ClosestN(searchWord string, max int) []string {
matches := make([]string, 0, max)
for i, pair := range rankByWordCount(cm.match(searchWord)) {
if i >= max {
break
}
matches = append(matches, pair.Key)
}
return matches
}
func rankByWordCount(wordFrequencies map[string]int) PairList {
pl := make(PairList, len(wordFrequencies))
i := 0
for k, v := range wordFrequencies {
pl[i] = Pair{k, v}
i++
}
sort.Sort(sort.Reverse(pl))
return pl
}
type Pair struct {
Key string
Value int
}
type PairList []Pair
func (p PairList) Len() int { return len(p) }
func (p PairList) Less(i, j int) bool { return p[i].Value < p[j].Value }
func (p PairList) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (cm *ClosestMatch) splitWord(word string) map[string]struct{} {
wordHash := make(map[string]struct{})
for _, j := range cm.SubstringSizes {
for i := 0; i < len(word)-j+1; i++ {
substring := string(word[i : i+j])
if len(strings.TrimSpace(substring)) > 0 {
wordHash[string(word[i:i+j])] = struct{}{}
}
}
}
if len(wordHash) == 0 {
wordHash[word] = struct{}{}
}
return wordHash
}
// AccuracyMutatingWords runs some basic tests against the wordlist to
// see how accurate this bag-of-characters method is against
// the target dataset
func (cm *ClosestMatch) AccuracyMutatingWords() float64 {
rand.Seed(1)
percentCorrect := 0.0
numTrials := 0.0
for wordTrials := 0; wordTrials < 200; wordTrials++ {
var testString, originalTestString string
cm.mux.Lock()
testStringNum := rand.Intn(len(cm.ID))
i := 0
for id := range cm.ID {
i++
if i != testStringNum {
continue
}
originalTestString = cm.ID[id].Key
break
}
cm.mux.Unlock()
var words []string
choice := rand.Intn(3)
if choice == 0 {
// remove a random word
words = strings.Split(originalTestString, " ")
if len(words) < 3 {
continue
}
deleteWordI := rand.Intn(len(words))
words = append(words[:deleteWordI], words[deleteWordI+1:]...)
testString = strings.Join(words, " ")
} else if choice == 1 {
// remove a random word and reverse
words = strings.Split(originalTestString, " ")
if len(words) > 1 {
deleteWordI := rand.Intn(len(words))
words = append(words[:deleteWordI], words[deleteWordI+1:]...)
for left, right := 0, len(words)-1; left < right; left, right = left+1, right-1 {
words[left], words[right] = words[right], words[left]
}
} else {
continue
}
testString = strings.Join(words, " ")
} else {
// remove a random word and shuffle and replace 2 random letters
words = strings.Split(originalTestString, " ")
if len(words) > 1 {
deleteWordI := rand.Intn(len(words))
words = append(words[:deleteWordI], words[deleteWordI+1:]...)
for i := range words {
j := rand.Intn(i + 1)
words[i], words[j] = words[j], words[i]
}
}
testString = strings.Join(words, " ")
letters := "abcdefghijklmnopqrstuvwxyz"
if len(testString) == 0 {
continue
}
ii := rand.Intn(len(testString))
testString = testString[:ii] + string(letters[rand.Intn(len(letters))]) + testString[ii+1:]
ii = rand.Intn(len(testString))
testString = testString[:ii] + string(letters[rand.Intn(len(letters))]) + testString[ii+1:]
}
closest := cm.Closest(testString)
if closest == originalTestString {
percentCorrect += 1.0
} else {
//fmt.Printf("Original: %s, Mutilated: %s, Match: %s\n", originalTestString, testString, closest)
}
numTrials += 1.0
}
return 100.0 * percentCorrect / numTrials
}
// AccuracyMutatingLetters runs some basic tests against the wordlist to
// see how accurate this bag-of-characters method is against
// the target dataset when mutating individual letters (adding, removing, changing)
func (cm *ClosestMatch) AccuracyMutatingLetters() float64 {
rand.Seed(1)
percentCorrect := 0.0
numTrials := 0.0
for wordTrials := 0; wordTrials < 200; wordTrials++ {
var testString, originalTestString string
cm.mux.Lock()
testStringNum := rand.Intn(len(cm.ID))
i := 0
for id := range cm.ID {
i++
if i != testStringNum {
continue
}
originalTestString = cm.ID[id].Key
break
}
cm.mux.Unlock()
testString = originalTestString
// letters to replace with
letters := "abcdefghijklmnopqrstuvwxyz"
choice := rand.Intn(3)
if choice == 0 {
// replace random letter
ii := rand.Intn(len(testString))
testString = testString[:ii] + string(letters[rand.Intn(len(letters))]) + testString[ii+1:]
} else if choice == 1 {
// delete random letter
ii := rand.Intn(len(testString))
testString = testString[:ii] + testString[ii+1:]
} else {
// add random letter
ii := rand.Intn(len(testString))
testString = testString[:ii] + string(letters[rand.Intn(len(letters))]) + testString[ii:]
}
closest := cm.Closest(testString)
if closest == originalTestString {
percentCorrect += 1.0
} else {
//fmt.Printf("Original: %s, Mutilated: %s, Match: %s\n", originalTestString, testString, closest)
}
numTrials += 1.0
}
return 100.0 * percentCorrect / numTrials
}