-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpgd_attack.py
378 lines (300 loc) · 13 KB
/
pgd_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from __future__ import print_function
import argparse
import os
import random
import sys
import numpy as np
import time
import math
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import torch.nn.functional as F
import skimage
import skimage.io
import skimage.transform
import cv2
from PIL import Image
from tqdm import tqdm
import scipy.misc as ssc
from dsgn.models import *
from dsgn.utils.numpy_utils import *
from dsgn.utils.numba_utils import *
from dsgn.utils.torch_utils import *
from dsgn.models.loss3d import RPN3DLoss
from dsgn.models.inference3d import make_fcos3d_postprocessor
from env_utils import *
parser = argparse.ArgumentParser(description="PGD attack")
parser.add_argument('-cfg', '--cfg', '--config',
default=None, help='config path')
parser.add_argument(
'--data_path', default='./data/kitti/training', help='select model')
parser.add_argument('--loadmodel', default=None, help='loading model')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--split_file', default='./data/kitti/val.txt',
help='split file')
parser.add_argument('--btest', '-btest', type=int, default=None)
parser.add_argument('--devices', '-d', type=str, default=None)
parser.add_argument('--tag', '-t', type=str, default='')
parser.add_argument('--debug', action='store_true', default=False,
help='debug mode')
parser.add_argument('--debugnum', default=None, type=int,
help='debug mode')
parser.add_argument('--iter', type=int, default=4, help='iteration number of pgd attack')
parser.add_argument('--alpha', type=float, default=(1.0 / 255))
parser.add_argument('--eps', type=float, default=0.3)
args = parser.parse_args()
if not args.devices:
args.devices = str(np.argmin(mem_info()))
if args.devices is not None and '-' in args.devices:
gpus = args.devices.split('-')
gpus[0] = 0 if not gpus[0].isdigit() else int(gpus[0])
gpus[1] = len(mem_info()) if not gpus[1].isdigit() else int(gpus[1]) + 1
args.devices = ','.join(map(lambda x: str(x), list(range(*gpus))))
if args.debugnum is None:
args.debugnum = 100
exp = Experimenter(os.path.dirname(args.loadmodel), args.cfg)
cfg = exp.config
if args.debug:
args.btest = len(args.devices.split(','))
num_workers = 0
cfg.debug = True
args.tag += 'debug{}'.format(args.debugnum)
else:
num_workers = 12
assert args.btest
print('Using GPU:{}'.format(args.devices))
os.environ['CUDA_VISIBLE_DEVICES'] = args.devices
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# ------------------- Data Loader -----------------------
from dsgn.dataloader import KITTILoader3D as ls
from dsgn.dataloader import KITTILoader_dataset3d as DA
all_left_img, all_right_img, all_left_disp, = ls.dataloader(args.data_path,
args.split_file,
depth_disp=True,
cfg=cfg,
is_train=True)
ImageFloader = DA.myImageFloder(
all_left_img, all_right_img, all_left_disp, True, split=args.split_file, cfg=cfg)
class BatchCollator(object):
def __init__(self, cfg):
super(BatchCollator, self).__init__()
self.cfg = cfg
def __call__(self, batch):
transpose_batch = list(zip(*batch))
ret = dict()
ret['imgL'] = torch.cat(transpose_batch[0], dim=0)
ret['imgR'] = torch.cat(transpose_batch[1], dim=0)
ret['disp_L'] = torch.stack(transpose_batch[2], dim=0)
ret['calib'] = transpose_batch[3]
ret['calib_R'] = transpose_batch[4]
ret['image_indexes'] = transpose_batch[5]
ii = 6
if self.cfg.RPN3D_ENABLE:
ret['targets'] = transpose_batch[ii]
ii += 1
if self.cfg.RPN3D_ENABLE:
ret['ious'] = transpose_batch[ii]
ii += 1
ret['labels_map'] = transpose_batch[ii]
ii += 1
return ret
# unable shuffle and sampler here
TestImgLoader = torch.utils.data.DataLoader(
ImageFloader,
batch_size=args.btest, shuffle=False, num_workers=num_workers,
collate_fn=BatchCollator(cfg))
# ------------------- Model -----------------------
model = StereoNet(cfg=cfg)
model = nn.DataParallel(model)
model.cuda()
model.eval()
if args.loadmodel is not None and args.loadmodel.endswith('tar'):
state_dict = torch.load(args.loadmodel)
model.load_state_dict(state_dict['state_dict'])
print('Loaded {}'.format(args.loadmodel))
else:
print('------------------------------ Load Nothing ---------------------------------')
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
# mean and standard deviation of the dataset
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
def tensor2im(input_image, imtype=np.uint8):
""""convert the tensor into a numpy array and denormalize it
Parameters:
input_image (tensor) -- tensor of input image
imtype (type) -- output type of numpy array
"""
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor):
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor.cpu().float().numpy()
if image_numpy.shape[0] == 1: # grayscale to RGB
image_numpy = np.tile(image_numpy, (3, 1, 1))
for i in range(len(mean)):
image_numpy[i] = image_numpy[i] * std[i] + mean[i]
image_numpy = image_numpy * 255
image_numpy = np.transpose(image_numpy, (1, 2, 0))
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
def save_img(im, path, w, h):
""" im can be tensor type data without any processing,
and the data is stored in path
Parameters:
im (tensor) -- tensor of input image
path (str) -- patch to save the image
size (int) -- size of the image
"""
im_numpy = tensor2im(im) # convert to numpy array and denormalize
im_array = Image.fromarray(im_numpy)
cropped = im_array.crop((0, 0, w, h))
cropped.save(path)
def denormalize(im):
for i in range(len(mean)):
im.data[0][i] = im.data[0][i] * std[i] + mean[i]
return im
def normalize(im):
for i in range(len(mean)):
im.data[0][i] = (im.data[0][i] - mean[i]) / std[i]
return im
def test(imgL, imgR, image_sizes=None, calibs_fu=None, calibs_baseline=None, calibs_Proj=None, calibs_Proj_R=None):
model.eval()
with torch.no_grad():
outputs = model(imgL, imgR, calibs_fu, calibs_baseline,
calibs_Proj, calibs_Proj_R=calibs_Proj_R)
pred_disp = outputs['depth_preds']
rets = [pred_disp]
if cfg.RPN3D_ENABLE:
box_pred = make_fcos3d_postprocessor(cfg)(
outputs['bbox_cls'], outputs[
'bbox_reg'], outputs['bbox_centerness'],
image_sizes=image_sizes, calibs_Proj=calibs_Proj)
rets.append(box_pred)
return rets
def main():
alpha = args.alpha
eps = args.eps
iter_num = args.iter
for batch_idx, databatch in enumerate(TestImgLoader):
imgL = databatch['imgL']
imgR = databatch['imgR']
disp_L = databatch['disp_L']
calib = databatch['calib']
calib_R = databatch['calib_R']
image_indexes = databatch['image_indexes']
targets = databatch['targets']
ious = databatch['ious']
labels_map = databatch['labels_map']
if cfg.debug:
if batch_idx * len(imgL) > args.debugnum:
break
imgL = Variable(torch.FloatTensor(imgL))
imgR = Variable(torch.FloatTensor(imgR))
disp_L = Variable(torch.FloatTensor(disp_L))
imgL, imgR, disp_true = imgL.cuda(), imgR.cuda(), disp_L.cuda()
ori_imgL_data = denormalize(imgL.clone().detach_().data)
ori_imgR_data = denormalize(imgR.clone().detach_().data)
if targets is not None:
for i in range(len(targets)):
targets[i].bbox = targets[i].bbox.cuda()
targets[i].box3d = targets[i].box3d.cuda()
calibs_fu = torch.as_tensor([c.f_u for c in calib])
calibs_baseline = torch.abs(
torch.as_tensor([(c.P[0, 3] - c_R.P[0, 3]) / c.P[0, 0] for c, c_R in zip(calib, calib_R)]))
calibs_Proj = torch.as_tensor([c.P for c in calib])
calibs_Proj_R = torch.as_tensor([c.P for c in calib_R])
# ---------
mask = (disp_true > cfg.min_depth) & (disp_true <= cfg.max_depth)
mask.detach_()
# ---------
# find image shape without pre-processing
img_name = "%06d" % image_indexes[0]
orig_img_path = '{0}/image_2/{1}.png'.format(args.data_path, img_name)
w, h = Image.open(orig_img_path).convert('RGB').size
# save clean image(without attacked)
save_dir = 'dsgn_pgd_iters_0'
save_dir_l = save_dir + '/image_2'
save_dir_r = save_dir + '/image_3'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
if not os.path.isdir(save_dir_l):
os.makedirs(save_dir_l)
if not os.path.isdir(save_dir_r):
os.makedirs(save_dir_r)
imgL_save = imgL.clone().detach_().cpu()
save_img(imgL_save[0], '{0}/{1}.png'.format(save_dir_l, img_name), w, h)
imgR_save = imgR.clone().detach_().cpu()
save_img(imgR_save[0], '{0}/{1}.png'.format(save_dir_r, img_name), w, h)
# store denormalized clean images for pgd attack
clean_imgL_data = denormalize(imgL.clone().detach_().data)
clean_imgR_data = denormalize(imgR.clone().detach_().data)
for iteration in range(iter_num):
loss = 0.
losses = dict()
# require gradient to perform pgd attack
imgL.requires_grad = True
imgR.requires_grad = True
outputs = model(imgL, imgR, calibs_fu, calibs_baseline, calibs_Proj, calibs_Proj_R=calibs_Proj_R)
if getattr(cfg, 'PlaneSweepVolume', True) and cfg.loss_disp:
depth_preds = [torch.squeeze(o, 1) for o in outputs['depth_preds']]
disp_loss = 0.
weight = [0.5, 0.7, 1.0]
for i, o in enumerate(depth_preds):
disp_loss += weight[3 - len(depth_preds) + i] * F.smooth_l1_loss(o[mask[0]], disp_true[mask],
size_average=True)
losses.update(disp_loss=disp_loss)
loss += disp_loss
if cfg.RPN3D_ENABLE:
bbox_cls, bbox_reg, bbox_centerness = outputs['bbox_cls'], outputs['bbox_reg'], outputs[
'bbox_centerness']
rpn3d_loss, rpn3d_cls_loss, rpn3d_reg_loss, rpn3d_centerness_loss = RPN3DLoss(cfg)(
bbox_cls, bbox_reg, bbox_centerness, targets, calib, calib_R,
ious=ious, labels_map=labels_map)
losses.update(rpn3d_cls_loss=rpn3d_cls_loss,
rpn3d_reg_loss=rpn3d_reg_loss,
rpn3d_centerness_loss=rpn3d_centerness_loss)
loss += rpn3d_loss
losses.update(loss=loss)
model.zero_grad()
imgL.retain_grad()
imgR.retain_grad()
loss.backward()
# denormalize image (->[0,1])
imgL = denormalize(imgL)
imgR = denormalize(imgR)
# pgd attack
adv_imgL_data = imgL + alpha * imgL.grad.sign()
adv_imgR_data = imgR + alpha * imgR.grad.sign()
eta_left = torch.clamp(adv_imgL_data - clean_imgL_data, min=-eps, max=eps)
eta_right = torch.clamp(adv_imgR_data - clean_imgR_data, min=-eps, max=eps)
imgL = torch.clamp(ori_imgL_data + eta_left, min=0, max=1)
imgR = torch.clamp(ori_imgR_data + eta_right, min=0, max=1)
# normalize image(->[-2.1.2.6])
imgL = normalize(imgL).detach()
imgR = normalize(imgR).detach()
# save attacked images
save_dir = 'dsgn_pgd_iters_{0}'.format(iteration + 1)
save_dir_l = save_dir + '/image_2'
save_dir_r = save_dir + '/image_3'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
if not os.path.isdir(save_dir_l):
os.makedirs(save_dir_l)
if not os.path.isdir(save_dir_r):
os.makedirs(save_dir_r)
imgL_save = imgL.clone().detach_().cpu()
save_img(imgL_save[0], '{0}/{1}.png'.format(save_dir_l, img_name), w, h)
imgR_save = imgR.clone().detach_().cpu()
save_img(imgR_save[0], '{0}/{1}.png'.format(save_dir_r, img_name), w, h)
if __name__ == '__main__':
main()