-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMobileFaceNet.py
344 lines (288 loc) · 14.5 KB
/
MobileFaceNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright 2018 The AI boy xsr-ai. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""MobileFaceNets.
MobileFaceNets, which use less than 1 million parameters and are specifically tailored for high-accuracy real-time
face verification on mobile and embedded devices.
here is MobileFaceNets architecture, reference from MobileNet_V2 (https://github.com/xsr-ai/MobileNetv2_TF).
As described in https://arxiv.org/abs/1804.07573.
MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices
Sheng Chen, Yang Liu, Xiang Gao, Zhen Han
"""
# Tensorflow mandates these.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import namedtuple
import functools
import tensorflow as tf
slim = tf.contrib.slim
# Conv and InvResBlock namedtuple define layers of the MobileNet architecture
# Conv defines 3x3 convolution layers
# InvResBlock defines 3x3 depthwise convolution followed by 1x1 convolution.
# stride is the stride of the convolution
# depth is the number of channels or filters in a layer
Conv = namedtuple('Conv', ['kernel', 'stride', 'depth', 'ratio'])
DepthwiseConv = namedtuple('DepthwiseConv', ['kernel', 'stride', 'depth', 'ratio'])
InvResBlock = namedtuple('InvResBlock', ['kernel', 'stride', 'depth', 'ratio', 'repeate'])
# _CONV_DEFS specifies the MobileNet body
_CONV_DEFS = [
Conv(kernel=[3, 3], stride=2, depth=64, ratio=1),
DepthwiseConv(kernel=[3, 3], stride=1, depth=64, ratio=1),
InvResBlock(kernel=[3, 3], stride=2, depth=64, ratio=2, repeate=5),
InvResBlock(kernel=[3, 3], stride=2, depth=128, ratio=4, repeate=1),
InvResBlock(kernel=[3, 3], stride=1, depth=128, ratio=2, repeate=6),
InvResBlock(kernel=[3, 3], stride=2, depth=128, ratio=4, repeate=1),
InvResBlock(kernel=[3, 3], stride=1, depth=128, ratio=2, repeate=2),
Conv(kernel=[1, 1], stride=1, depth=512, ratio=1),
]
def inverted_block(net, input_filters, output_filters, expand_ratio, stride, scope=None):
'''fundamental network struture of inverted residual block'''
with tf.name_scope(scope):
res_block = slim.conv2d(inputs=net, num_outputs=input_filters * expand_ratio, kernel_size=[1, 1])
# depthwise conv2d
res_block = slim.separable_conv2d(inputs=res_block, num_outputs=None, kernel_size=[3, 3], stride=stride, depth_multiplier=1.0, normalizer_fn=slim.batch_norm)
res_block = slim.conv2d(inputs=res_block, num_outputs=output_filters, kernel_size=[1, 1], activation_fn=None)
# stride 2 blocks
if stride == 2:
return res_block
# stride 1 block
else:
if input_filters != output_filters:
net = slim.conv2d(inputs=net, num_outputs=output_filters, kernel_size=[1, 1], activation_fn=None)
return tf.add(res_block, net)
def mobilenet_v2_base(inputs,
final_endpoint='Conv2d_7',
min_depth=8,
conv_defs=None,
scope=None):
"""Mobilenet v2.
Constructs a Mobilenet v2 network from inputs to the given final endpoint.
Args:
inputs: a tensor of shape [batch_size, height, width, channels].
final_endpoint: specifies the endpoint to construct the network up to. It
can be one of ['Conv2d_0', 'Conv2d_1_InvResBlock', 'Conv2d_2_InvResBlock',
'Conv2d_3_InvResBlock', 'Conv2d_4_InvResBlock', 'Conv2d_5_InvResBlock,
'Conv2d_6_InvResBlock', 'Conv2d_7_InvResBlock', 'Conv2d_8'].
min_depth: Minimum depth value (number of channels) for all convolution ops.
Enforced output depth to min_depth.
conv_defs: A list of ConvDef namedtuples specifying the net architecture.
scope: Optional variable_scope.
Returns:
tensor_out: output tensor corresponding to the final_endpoint.
end_points: a set of activations for external use, for example summaries or
losses.
Raises:
ValueError: if final_endpoint is not set to one of the predefined values
is not allowed.
"""
depth = lambda d: max(int(d), min_depth)
end_points = {}
if conv_defs is None:
conv_defs = _CONV_DEFS
with tf.variable_scope(scope, 'MobileFaceNet', [inputs]):
with slim.arg_scope([slim.conv2d, slim.separable_conv2d], padding='SAME'):
net = inputs
for i, conv_def in enumerate(conv_defs):
end_point_base = 'Conv2d_%d' % i
if isinstance(conv_def, Conv):
end_point = end_point_base
net = slim.conv2d(net, depth(conv_def.depth), conv_def.kernel,
stride=conv_def.stride,
normalizer_fn=slim.batch_norm,
scope=end_point)
end_points[end_point] = net
if end_point == final_endpoint:
return net, end_points
elif isinstance(conv_def, DepthwiseConv):
end_point = 'DepthwiseConv'
# depthwise conv2d
net = slim.separable_conv2d(inputs=net, num_outputs=None, kernel_size=conv_def.kernel, stride=conv_def.stride,
depth_multiplier=1.0, normalizer_fn=slim.batch_norm)
net = slim.conv2d(inputs=net, num_outputs=conv_def.depth, kernel_size=[1, 1], activation_fn=None)
end_points[end_point] = net
if end_point == final_endpoint:
return net, end_points
elif isinstance(conv_def, InvResBlock):
end_point = end_point_base + '_InvResBlock'
# inverted bottleneck blocks
input_filters = net.shape[3].value
# first layer needs to consider stride
net = inverted_block(net, input_filters, depth(conv_def.depth), conv_def.ratio, conv_def.stride, end_point+'_0')
for index in range(1, conv_def.repeate):
suffix = '_' + str(index)
net = inverted_block(net, input_filters, depth(conv_def.depth), conv_def.ratio, 1, end_point+suffix)
end_points[end_point] = net
if end_point == final_endpoint:
return net, end_points
else:
raise ValueError('Unknown convolution type %s for layer %d'
% (conv_def.ltype, i))
raise ValueError('Unknown final endpoint %s' % final_endpoint)
def mobilenet_v2(inputs,
bottleneck_layer_size=128,
is_training=False,
min_depth=8,
conv_defs=None,
spatial_squeeze=True,
reuse=None,
scope='MobileFaceNet',
global_pool=False):
"""Mobilenet v2 model for classification.
Args:
inputs: a tensor of shape [batch_size, height, width, channels].
bottleneck_layer_size: number of predicted classes. If 0 or None, the logits layer
is omitted and the input features to the logits layer (before dropout)
are returned instead.
is_training: whether is training or not.
min_depth: Minimum depth value (number of channels) for all convolution ops.
Enforced output depth to min_depth..
conv_defs: A list of ConvDef namedtuples specifying the net architecture.
spatial_squeeze: if True, logits is of shape is [B, C], if false logits is
of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
scope: Optional variable_scope.
global_pool: Optional boolean flag to control the avgpooling before the
logits layer. If false or unset, pooling is done with a fixed window
that reduces default-sized inputs to 1x1, while larger inputs lead to
larger outputs. If true, any input size is pooled down to 1x1.
Returns:
net: a 2D Tensor with the logits (pre-softmax activations) if bottleneck_layer_size
is a non-zero integer, or the non-dropped-out input to the logits layer
if bottleneck_layer_size is 0 or None.
end_points: a dictionary from components of the network to the corresponding
activation.
Raises:
ValueError: Input rank is invalid.
"""
input_shape = inputs.get_shape().as_list()
if len(input_shape) != 4:
raise ValueError('Invalid input tensor rank, expected 4, was: %d' %
len(input_shape))
with tf.variable_scope(scope, 'MobileFaceNet', [inputs], reuse=reuse) as scope:
with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training):
net, end_points = mobilenet_v2_base(inputs, scope=scope, min_depth=min_depth, conv_defs=conv_defs)
with tf.variable_scope('Logits'):
if global_pool:
# Global average pooling.
net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
end_points['global_pool'] = net
else:
# Pooling with a fixed kernel size.
kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7])
# Global depthwise conv2d
net = slim.separable_conv2d(inputs=net, num_outputs=None, kernel_size=kernel_size, stride=1,
depth_multiplier=1.0, activation_fn=None, padding='VALID')
net = slim.conv2d(inputs=net, num_outputs=512, kernel_size=[1, 1], stride=1, activation_fn=None, padding='VALID')
end_points['GDConv'] = net
if not bottleneck_layer_size:
return net, end_points
# 1 x 1 x 1024
# net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
logits = slim.conv2d(net, bottleneck_layer_size, kernel_size=[1, 1], stride=1, activation_fn=None, scope='LinearConv1x1')
if spatial_squeeze:
logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
end_points['Logits'] = logits
return logits, end_points
mobilenet_v2.default_image_size = 112
def wrapped_partial(func, *args, **kwargs):
partial_func = functools.partial(func, *args, **kwargs)
functools.update_wrapper(partial_func, func)
return partial_func
def _reduced_kernel_size_for_small_input(input_tensor, kernel_size):
"""Define kernel size which is automatically reduced for small input.
If the shape of the input images is unknown at graph construction time this
function assumes that the input images are large enough.
Args:
input_tensor: input tensor of size [batch_size, height, width, channels].
kernel_size: desired kernel size of length 2: [kernel_height, kernel_width]
Returns:
a tensor with the kernel size.
"""
shape = input_tensor.get_shape().as_list()
if shape[1] is None or shape[2] is None:
kernel_size_out = kernel_size
else:
kernel_size_out = [min(shape[1], kernel_size[0]),
min(shape[2], kernel_size[1])]
return kernel_size_out
def prelu(input, name=''):
alphas = tf.get_variable(name=name + 'prelu_alphas',initializer=tf.constant(0.25,dtype=tf.float32,shape=[input.get_shape()[-1]]))
pos = tf.nn.relu(input)
neg = alphas * (input - abs(input)) * 0.5
return pos + neg
def mobilenet_v2_arg_scope(is_training=True,
weight_decay=0.00005,
regularize_depthwise=False):
"""Defines the default MobilenetV2 arg scope.
Args:
is_training: Whether or not we're training the model.
weight_decay: The weight decay to use for regularizing the model.
regularize_depthwise: Whether or not apply regularization on depthwise.
Returns:
An `arg_scope` to use for the mobilenet v2 model.
"""
batch_norm_params = {
'is_training': is_training,
'center': True,
'scale': True,
'fused': True,
'decay': 0.995,
'epsilon': 2e-5,
# force in-place updates of mean and variance estimates
'updates_collections': None,
# Moving averages ends up in the trainable variables collection
'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
}
# Set weight_decay for weights in Conv and InvResBlock layers.
#weights_init = tf.truncated_normal_initializer(stddev=stddev)
weights_init = tf.contrib.layers.xavier_initializer(uniform=False)
regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
if regularize_depthwise:
depthwise_regularizer = regularizer
else:
depthwise_regularizer = None
with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
weights_initializer=weights_init,
activation_fn=prelu, normalizer_fn=slim.batch_norm): #tf.keras.layers.PReLU
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.conv2d], weights_regularizer=regularizer):
with slim.arg_scope([slim.separable_conv2d],
weights_regularizer=depthwise_regularizer) as sc:
return sc
def inference(images, bottleneck_layer_size=128, phase_train=False,
weight_decay=0.00005, reuse=False):
'''build a mobilenet_v2 graph to training or inference.
Args:
images: a tensor of shape [batch_size, height, width, channels].
bottleneck_layer_size: number of predicted classes. If 0 or None, the logits layer
is omitted and the input features to the logits layer (before dropout)
are returned instead.
phase_train: Whether or not we're training the model.
weight_decay: The weight decay to use for regularizing the model.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
Returns:
net: a 2D Tensor with the logits (pre-softmax activations) if bottleneck_layer_size
is a non-zero integer, or the non-dropped-out input to the logits layer
if bottleneck_layer_size is 0 or None.
end_points: a dictionary from components of the network to the corresponding
activation.
Raises:
ValueError: Input rank is invalid.
'''
arg_scope = mobilenet_v2_arg_scope(is_training=phase_train, weight_decay=weight_decay)
with slim.arg_scope(arg_scope):
return mobilenet_v2(images, bottleneck_layer_size=bottleneck_layer_size, is_training=phase_train, reuse=reuse)