-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscaling.py
executable file
·617 lines (515 loc) · 23.2 KB
/
scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#!/usr/bin/env python3
"""
Perform scaling runs on special scaling scripts. This driver script
should be run serially, and it will then spawn off a series of MPI
processes to test the scaling performance of a given machine.
The target script <scaling_script> is assumed to take the following
command line inputs:
2-D scaling script (1-D processor decomposition):
scaling_script.py --nz=nz --nx=nx
3-D scaling script (1- or 2-D processor decomposition):
scaling_script.py --nz=nz --nx=nx --ny=ny --mesh=p1,p2
where nz is the Chebyshev modal resolution, and nx and ny are the
Fourier modal resolutions. The mesh keyword should accept the 2-D
processor mesh, with p1 and p2 the processor mesh values.
If the 3-D scaling script is not passed the mesh keyword, it should default
to a 1-D domain decomposition.
These scaling scripts should output well formated scaling outputs,
following the example scripts. In a future revision, that output will
be rolled into this scaling.py package.
Note that the subprocess command as currently used executes within a shell
environment. Please ensure that all inputs are appropriately sanitized.
Usage:
scaling.py run <scaling_script> [<nz> options]
scaling.py plot <files>... [options]
Options:
<nz> resolution in z (fourier or chebyshev) direction [default: 256]
--nx=<nx> resolution in x (fourier); default is nz
--ny=<ny> resolution in y (fourier); default is nz
--label=<label> Label for output file
--niter=<niter> Number of iterations to run for [default: 100]
--verbose Print verbose output at end of each run (stdout and stderr)
--3D Run 3D script with 2D mesh domain decomposition
--one-pencil Push to one pencil per core in coeff space
--test-type=<test-type> Mesh-selection strategy [default: exhaustive]
--max-cores=<max-cores> Max number of available cores
--min-cores=<min-cores> Min number of cores to use
--output=<dir> Output directory [default: ./scaling]
--clean_plot Remove run-specific labels during plotting (e.g., for proposals or papers)
--spread Add random jitter in x to spread out overlapping points; default value is 5%
--OpenMPI Assume we're in an OpenMPI env; default if nothing else is selected
--MPISGI Assume we're in a SGI-MPT env (e.g., NASA Pleiades)
--IntelMPI Assume we're in an IntelMPI env (e.g., PSC Bridges)
--Slurm Assume we're in a Slurm env (e.g., Archer2)
"""
import os
import numpy as np
import itertools
import subprocess
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.style.use('ggplot')
import time
import h5py
import pathlib
def num(s):
try:
return int(s)
except ValueError:
return float(s)
######################
## Scaling Routines ##
######################
def build_mesh_list(n_z, mesh_dim=2, test_type='exhaustive', one_pencil=None, max_cores=None, min_cores=None):
if test_type == "simple":
nz = n_z
# Try all powers of 2 between min and max
ln2_min = np.floor(np.log2(min_cores))
ln2_max = np.floor(np.log2(max_cores))
corelist = 2**np.arange(ln2_min, ln2_max+1, dtype=int)
# Build mesh list
if mesh_dim == 1:
mesh_list = []
# Assume nx = nz
nx = nz
px = nx // 2
# Scale until empty cores
for cores in corelist:
if cores <= px:
mesh_list.append(cores)
elif mesh_dim == 2:
mesh_list = []
# Assume nx = ny = nz
nx = ny = nz
px = nx // 2
py = ny
# Scale fully over x, then over y until empty cores
for cores in corelist:
if cores <= px:
mesh_list.append((cores, 1))
elif cores <= (px * py):
mesh_list.append((px, cores//px))
return mesh_list
if one_pencil:
print("Pushing to one pencil per core in coeff space; this may be inefficient depending on dealias padding choice.")
n_z_2 = np.log(n_z)/np.log(2)
else:
n_z_2 = np.log(n_z)/np.log(2)-1 # 2 pencils per core min
if max_cores is not None:
log2_max = np.log(max_cores)/np.log(2)
if mesh_dim == 2:
log2_max = log2_max/2
log2_max = np.floor(log2_max)
if n_z_2 > log2_max:
n_z_2 = log2_max
log_2_span = 3
n_z_2_min = n_z_2-log_2_span
if min_cores is not None:
min_cores = int(args['--min-cores'])
log2_min = np.log(min_cores)/np.log(2)
if mesh_dim == 2:
log2_min = log2_min/2
log2_min = np.ceil(log2_min)
n_z_2_min = log2_min
n_z_2 = np.floor(n_z_2)
n_z_2_min = np.ceil(n_z_2_min)
CPU_set = (2**np.arange(n_z_2_min, n_z_2+1)).astype(int)[::-1] # flip order so large numbers of cores are done first (and arange goes to -1 of top)
if mesh_dim == 2:
import itertools
CPU_set_1 = CPU_set
CPU_set_2 = CPU_set
if max_cores is not None:
if (np.max(CPU_set_1)**2) < max_cores:
# append new element to front of set_2
CPU_set_2 = np.append(2*np.max(CPU_set_2), CPU_set_2)
if min_cores is not None:
if (np.min(CPU_set_1)*np.min(CPU_set_2)) > min_cores:
# append new element to end of set_1
CPU_set_1 = np.append(CPU_set_1, int(np.min(CPU_set_1)/2))
print('testing from {:d} to {:d} cores'.format(np.min(CPU_set_1)*np.min(CPU_set_2),np.max(CPU_set_1)*np.max(CPU_set_2)))
if test_type=='exhaustive':
print('doing exhaustive scaling test')
CPU_set = itertools.product(CPU_set_1, CPU_set_2)
elif test_type=='patient':
print('doing patient scaling test')
CPU_set = itertools.combinations_with_replacement(CPU_set, 2)
else:
# symmetric_cobminations
print('doing minimal scaling test')
CPU_set = zip(CPU_set_1, CPU_set_2)
else:
print('testing {}, from {:d} to {:d} cores'.format(scaling_script, np.min(CPU_set),np.max(CPU_set)))
mesh_list = list(CPU_set)
return mesh_list
def do_scaling_run(scaling_script, resolution, CPU_set,
niter=None, mesh_dim=2,
verbose=None, label=None,
OpenMPI=None, MPISGI=None, IntelMPI=None, Slurm=None):
if OpenMPI is None and IntelMPI is None and MPISGI is None and Slurm is None:
OpenMPI = True
dim = len(resolution)
sim_nx = resolution[0]
sim_nz = resolution[-1]
if dim==3:
sim_ny = resolution[1]
res_string = '{:d}x{:d}x{:d}'.format(sim_nx, sim_ny, sim_nz)
else:
res_string = '{:d}x{:d}'.format(sim_nx, sim_nz)
# create scaling data file
file_label = scaling_script.split('.py')[0]
file_name = 'scaling_data_'+file_label
if not label is None:
file_name = file_name+'_'+label
file_name = file_name+'.h5'
print("writing file {}".format(file_name))
scaling_file = h5py.File(file_name, 'a')
if 'details' not in scaling_file:
scaling_file['details/script'] = scaling_script
res_group = 'data/'+res_string
scaling_data = scaling_file.require_group(res_group)
start_time = time.time()
for CPUs in CPU_set:
if mesh_dim == 2:
ENV_N_TOTAL_CPU = np.prod(CPUs)
cpu_group = '{:d}x{:d}'.format(CPUs[0],CPUs[1])
else:
ENV_N_TOTAL_CPU = CPUs
cpu_group = '{:d}'.format(CPUs[0])
print("scaling test of {}".format(scaling_script),
" at {:s}".format(res_string),
" on {:d} cores".format(ENV_N_TOTAL_CPU))
if not cpu_group in scaling_data:
print('testing cpu set: {:}'.format(cpu_group))
scaling_file.close()
test_env = dict(os.environ,
N_X='{:d}'.format(sim_nx),
N_Z='{:d}'.format(sim_nz),
N_TOTAL_CPU='{:d}'.format(ENV_N_TOTAL_CPU))
if OpenMPI:
commands = 'mpirun -n {:d} --bind-to core --map-by core'.format(ENV_N_TOTAL_CPU)
elif MPISGI:
commands = 'mpiexec_mpt -n {:d}'.format(ENV_N_TOTAL_CPU)
elif IntelMPI:
commands = 'mpirun -n {:d}'.format(ENV_N_TOTAL_CPU)
elif Slurm:
commands = 'srun -n {:d} --distribution=block:block --hint=nomultithread'.format(ENV_N_TOTAL_CPU)
else:
commands = 'mpirun -n {:d}'.format(ENV_N_TOTAL_CPU)
commands += ' python3 {:s} --nz={:d} --nx={:d}'.format(scaling_script, sim_nz, sim_nx)
if mesh_dim == 2:
commands += ' --mesh={:d},{:d}'.format(CPUs[0], CPUs[1])
commands += ' --ny={:d}'.format(sim_ny)
print(" pencils/core (0): {:g}x{:g}={:g}".format(1/2*sim_nx/CPUs[0], sim_ny/CPUs[1], 1/2*sim_nx*sim_ny/(CPUs[0]*CPUs[1])))
print(" pencils/core (2): {:g}x{:g}={:g}".format(1/2*sim_nx/CPUs[0], 3/2*sim_nz/CPUs[1], 1/2*sim_nx*3/2*sim_nz/(CPUs[0]*CPUs[1])))
print(" pencils/core (4): {:g}x{:g}={:g}".format(3/2*sim_ny/CPUs[0], 3/2*sim_nz/CPUs[1], 3/2*sim_ny*3/2*sim_nz/(CPUs[0]*CPUs[1])))
min_pencils_per_core = 1/2*sim_nx*sim_ny/(CPUs[0]*CPUs[1])
else:
print(" pencils/core: {:g} ({:g}) and {:g} ({:g})".format(1/2*sim_nx/ENV_N_TOTAL_CPU, 3/2*sim_nx/ENV_N_TOTAL_CPU,
sim_nz/ENV_N_TOTAL_CPU, 3/2*sim_nz/ENV_N_TOTAL_CPU))
min_pencils_per_core = min(1/2*sim_nx/ENV_N_TOTAL_CPU, sim_nz/ENV_N_TOTAL_CPU)
if niter is not None:
commands += ' --niter={:d}'.format(niter)
print('command: {:s}'.format(commands))
proc = subprocess.run(commands,
env=test_env,
shell=True,
stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
stdout, stderr = proc.stdout, proc.stderr
if verbose:
for line in stdout.splitlines():
print("out: {}".format(line))
for line in stderr.splitlines():
print("err: {}".format(line))
for line in stdout.splitlines():
if line.startswith('scaling:'):
split_line = line.split()
print(split_line)
N_total_cpu=num(split_line[1])
N_x = num(split_line[2])
N_z = num(split_line[3])
startup_time = num(split_line[4])
wall_time = num(split_line[5])
wall_time_per_iter = num(split_line[6])
DOF_cyles_per_cpusec = num(split_line[7])
scaling_file = h5py.File(file_name, 'a')
scaling_data = scaling_file.require_group(res_group)
data_set = scaling_data.create_group(cpu_group)
data_set['N_total_cpu'] = N_total_cpu
data_set['min_pencils_per_core'] = min_pencils_per_core
data_set['N_z'] = N_z
data_set['N_x'] = N_x
data_set['sim_nx'] = sim_nx
data_set['sim_nz'] = sim_nz
if dim == 3:
data_set['N_y'] = N_x
data_set['sim_ny'] = sim_ny
data_set['startup_time'] = startup_time
data_set['wall_time'] = wall_time
data_set['wall_time_per_iter'] = wall_time_per_iter
data_set['DOF_cyles_per_cpusec'] = DOF_cyles_per_cpusec
data_set['dim'] = dim
if dim == 3:
data_set['plot_label'] = r'${:d}\times{:d}\times{:d}$'.format(sim_nx, sim_ny, sim_nz)
data_set['plot_label_short'] = r'${:d}^3$'.format(sim_nz)
else:
data_set['plot_label'] = r'${:d}\times{:d}$'.format(sim_nx, sim_nz)
data_set['plot_label_short'] = r'${:d}^2$'.format(sim_nz)
if mesh_dim == 2:
data_set['mesh'] = [CPUs[0], CPUs[1]]
data_set['N_x_cpu'] = CPUs[0]
data_set['N_y_cpu'] = CPUs[1]
else:
data_set['mesh'] = None
else:
print('cpu set {:} has already been tested; skipping.'.format(cpu_group))
scaling_file.close()
end_time = time.time()
print(40*'*')
print('time to test {:s}: {:8.3g}'.format(res_string, end_time-start_time))
print(40*'*')
def read_scaling_run(file):
print("opening file {}".format(file))
scaling_file = h5py.File(file, 'r')
script_set = {}
for res in scaling_file['data']:
res_set = {}
data = {}
for cpus in scaling_file['data'][res]:
data[cpus] = {}
for item in scaling_file['data'][res][cpus]:
data[cpus][item] = scaling_file['data'][res][cpus][item][()]
for item in next(iter(data.values())):
res_set[item] = []
for cpus in data:
for item in data[cpus]:
res_set[item].append(data[cpus][item])
for item in res_set:
res_set[item] = np.array(res_set[item])
script_set[res] = res_set
scaling_file.close()
return script_set
#######################
## Plotting Routines ##
#######################
def plot_scaling_run(data_set, ax_set,
ideal_curves = True,
linestyle='solid', marker='o', color='None',
explicit_label = True, clean_plot=False,
spread=None,
dim=None, zorder=None):
sim_nx = data_set['sim_nx']
sim_nz = data_set['sim_nz']
N_total_cpu = np.array(data_set['N_total_cpu'])
min_pencils_per_core = data_set['min_pencils_per_core']
if spread:
ncases = len(N_total_cpu)
from numpy.random import default_rng
rng = default_rng()
jitter = rng.uniform(size=ncases, low=-0.05,high=0.05)
N_total_cpu += (N_total_cpu*jitter).astype(int)
min_pencils_per_core += min_pencils_per_core*jitter
N_x = data_set['N_x']
N_z = data_set['N_z']
if dim is None:
if 'dim' in data_set:
dim = int(data_set['dim'][0])
else:
dim = 2
if dim==3:
sim_ny = data_set['sim_ny']
N_y = data_set['N_y']
N_x_cpu = data_set['N_x_cpu']
N_y_cpu = data_set['N_y_cpu']
startup_time = data_set['startup_time']
wall_time = data_set['wall_time']
wall_time_per_iter = data_set['wall_time_per_iter']
DOF_cyles_per_cpusec = data_set['DOF_cyles_per_cpusec']
if dim == 2:
resolution = [sim_nx, sim_nz]
elif dim == 3 :
resolution = [sim_nx, sim_ny, sim_nz]
if color == 'None':
color=next(ax_set[0]._get_lines.prop_cycler)['color']
if clean_plot:
plot_label = data_set['plot_label'][0].split('-')[0]
else:
plot_label = data_set['plot_label_short'][0].decode('UTF-8')
if explicit_label:
label_string = plot_label
else:
label_string = data_set['plot_label_short'][0].decode('UTF-8')
ax_set[0].plot(N_total_cpu, wall_time, label=label_string,
marker=marker, linestyle=linestyle, color=color, zorder=zorder)
ax_set[1].plot(N_total_cpu, wall_time_per_iter, label=label_string,
marker=marker, linestyle='none', color=color, alpha=0.5, zorder=zorder)
ax_set[2].plot(min_pencils_per_core, DOF_cyles_per_cpusec/1e5, label=label_string,
marker=marker, linestyle='none', color=color, alpha=0.5, zorder=zorder)
ax_set[3].plot(N_total_cpu, startup_time, label=label_string,
marker=marker, linestyle='none', color=color, zorder=zorder)
ax_set[4].plot(N_total_cpu, 1/DOF_cyles_per_cpusec, label=label_string,
marker=marker, linestyle='none', color=color, alpha=0.5, zorder=zorder)
if ideal_curves:
ideal_cores = np.sort(N_total_cpu)
i_min = np.argmin(N_total_cpu)
ideal_time = wall_time[i_min]*(N_total_cpu[i_min]/ideal_cores)
ideal_time_per_iter = wall_time_per_iter[i_min]*(N_total_cpu[i_min]/ideal_cores)
ax_set[0].plot(ideal_cores, ideal_time, linestyle='--', color='black', zorder=0)
ylim_0 = min(ax_set[1].get_ylim()[0], np.min(wall_time_per_iter))
ax_set[1].plot(ideal_cores, ideal_time_per_iter, linestyle='--', color='black', zorder=0)
ax_set[1].set_ylim(bottom=ylim_0)
#ax_set[1].set_ylim(emit=True)
for i in range(5):
ax_set[i].set_xscale('log', base=2)
ax_set[i].set_yscale('log')
ax_set[i].margins(x=0.05, y=0.05)
ax_set[4].set_xscale('log')
ax_set[4].margins(x=0.05, y=0.05)
def initialize_plots(num_figs, fontsize=12):
import scipy.constants as scpconst
fig_set = []
ax_set = []
x_size = 7 # width of single column in inches
y_size = x_size/scpconst.golden*1.1
for i in range(num_figs):
fig = plt.figure(figsize=(x_size, y_size))
ax = fig.add_subplot(1,1,1)
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(fontsize)
fig_set.append(fig)
ax_set.append(ax)
return fig_set, ax_set
def legend_with_ideal(ax, loc='lower left', fontsize=8):
handles, labels = ax.get_legend_handles_labels()
idealArtist = plt.Line2D((0,1),(0,0), color='black', linestyle='--')
ax.legend([handle for i,handle in enumerate(handles)]+[idealArtist],
[label for i,label in enumerate(labels)]+['ideal'],
loc=loc, prop={'size':fontsize})
def add_base10_axis(ax):
#######################################################
# from http://stackoverflow.com/questions/31803817/how-to-add-second-x-axis-at-the-bottom-of-the-first-one-in-matplotlib
ax10 = ax.twiny()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
# Add some extra space for the second axis at the bottom
#fig.subplots_adjust(bottom=0.2)
# Move twinned axis ticks and label from top to bottom
ax10.xaxis.set_ticks_position("bottom")
ax10.xaxis.set_label_position("bottom")
# Offset the twin axis below the host
ax10.spines["bottom"].set_position(("axes", -0.15))
# Turn on the frame for the twin axis, but then hide all
# but the bottom spine
ax10.set_frame_on(True)
ax10.patch.set_visible(False)
for sp in ax10.spines.values():
sp.set_visible(False)
ax10.spines["bottom"].set_visible(True)
tick_locs = ax.xaxis.get_ticklocs()
ax10.set_xscale('log', base=2)
ax10.grid()
#ax10.grid(b=False) # suppress gridlines
ax10.set_xticks(tick_locs)
ax10.set_xticklabels(["{:d}".format(int(V)) for V in tick_locs])
ax10.set_xlim(xlim)
ax10.set_ylim(ylim)
return ax10
#######################################################
def finalize_plots(fig_set, ax_set):
ax_set[0].set_xlabel('N-core')
ax_set[0].set_ylabel('total time [s]')
legend_with_ideal(ax_set[0], loc='lower left')
#fig_set[0].savefig('scaling_time.pdf')
ax10 = add_base10_axis(ax_set[1])
ax_set[1].set_xlabel('N-core')
ax_set[1].set_ylabel('time/iter [s]')
legend_with_ideal(ax_set[1], loc='lower left')
xlim = ax_set[1].get_xlim()
ax_set[1].set_xlim(0.9*xlim[0],1.1*xlim[1])
ylim = ax_set[1].get_ylim()
ax_set[1].set_ylim(1/2*ylim[0],2*ylim[1])
fig_set[1].subplots_adjust(bottom=0.2)
plt.tight_layout()
fig_set[1].savefig('scaling_time_per_iter.pdf')
#ax_set[2].set_xlabel('N-core')
xlim = ax_set[2].get_xlim()
ax_set[2].set_xlim(xlim[1],xlim[0])
ax_set[2].set_xlabel('Pencils/core')
ax_set[2].set_ylabel(r'$10^5$ mode-iters/core-sec')
ax_set[2].legend(loc='upper right')
ax_set[2].set_yscale('linear')
plt.tight_layout()
fig_set[2].savefig('scaling_DOF.pdf')
fig_set[2].savefig('scaling_DOF.png', dpi=300)
ax_set[3].set_xlabel('N-core')
ax_set[3].set_ylabel('startup time [s]')
ax_set[3].legend(loc='lower left')
plt.tight_layout()
fig_set[3].savefig('scaling_startup.pdf')
ax_set[4].set_xlabel('N-core')
ax_set[4].set_ylabel('1/speed')
ax_set[4].legend(loc='upper left')
plt.tight_layout()
fig_set[4].savefig('scaling_latency.pdf')
if __name__ == "__main__":
from docopt import docopt
import logging
logger = logging.getLogger(__name__)
# Parse arguments
args = docopt(__doc__)
# Run
if args['run']:
# Resolutions
n_z = num(args['<nz>'])
n_x = num(args['--nx']) if args['--nx'] else n_z
n_y = num(args['--ny']) if args['--ny'] else n_z
if args['--3D']:
resolution = [n_x, n_y, n_z]
mesh_dim = 2
else:
resolution = [n_x, n_z]
mesh_dim = 1
# Core limits
max_cores = int(args['--max-cores']) if args['--max-cores'] else None
min_cores = int(args['--min-cores']) if args['--min-cores'] else None
# Get CPU set
print(40*'=')
print("beginning scaling run with resolution: {}".format(resolution))
mesh_list = build_mesh_list(n_z, one_pencil=args['--one-pencil'], test_type=args['--test-type'], mesh_dim=mesh_dim, max_cores=max_cores, min_cores=min_cores)
print("final mesh list:", mesh_list)
print(40*'=')
# Do scaling run
start_time = time.time()
do_scaling_run(args['<scaling_script>'], resolution, mesh_list, niter=int(float(args['--niter'])), mesh_dim=mesh_dim, verbose=args['--verbose'], label=args['--label'],
OpenMPI=args['--OpenMPI'], MPISGI=args['--MPISGI'], IntelMPI=args['--IntelMPI'], Slurm=args['--Slurm'])
end_time = time.time()
print(40*'=')
print('scaling run finished')
print('time to do all tests: {:f}'.format(end_time-start_time))
print(40*'=')
# Plot
elif args['plot']:
# Helpers
import re
def natural_sort(l, reverse=False):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key, reverse=reverse)
# Setup output
output_path = pathlib.Path(args['--output']).absolute()
if not output_path.exists():
output_path.mkdir()
# Plot
fig_set, ax_set = initialize_plots(5)
zorder_base = 2
marker = ['o','s','^','*']
for ifile, file in enumerate(args['<files>']):
data_set = read_scaling_run(file)
n_res = len(data_set)
for i_res, res in enumerate(natural_sort(data_set.keys(), reverse=True)):
zorder = (n_res-i_res-1)/n_res+zorder_base
print('plotting run: {:} at layer {:.2f}'.format(res, zorder))
plot_scaling_run(data_set[res], ax_set, clean_plot=args['--clean_plot'], zorder=zorder, spread=args['--spread'], marker=marker[ifile])
for ax in ax_set:
ax.set_prop_cycle(None)
finalize_plots(fig_set, ax_set)