-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathevaluation_on_widerface.py
144 lines (118 loc) · 5.35 KB
/
evaluation_on_widerface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/ python3
# -*- coding: utf-8 -*-
# @Time : 2019-10-17
# @Author : vealocia
# @FileName: evaluation_on_widerface.py
import math
import os
import sys
import cv2
sys.path.append('../')
import darknet_landmark as darknet
val_image_root = "/mnt/data1/yanghuiyu/dlmodel/Fd/RetinaFace/data/retinaface/val/images/" # path to widerface valuation image root
val_result_txt_save_root = "./widerface_evaluate/widerface_evaluation/" # result directory
# val_result_img_save_root = "./result_imgs/" # result directory
def cvDrawBoxes(detections, img ,ratio_w , ratio_h ):
for detection in detections:
xmin, ymin, xmax, ymax = detection[:4]
pt1 = (xmin , ymin )
pt2 = (xmax, ymax)
cv2.rectangle(img, pt1, pt2, (0, 0, 255), 1)
# cv2.putText(img,
# detection[0].decode() +
# " [" + str(round(detection[1] * 100, 2)) + "]",
# (pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
# [0, 255, 0], 2)
return img
def convertBack(x, y, w, h):
xmin = int(round(x - (w / 2)))
xmax = int(round(x + (w / 2)))
ymin = int(round(y - (h / 2)))
ymax = int(round(y + (h / 2)))
return xmin, ymin, xmax, ymax
netMain = None
metaMain = None
altNames = None
configPath = "./cfg/mbv2_yolov3_face.cfg"
# configPath = "./cfg/lite_yolov3_face.cfg"
weightPath = "./backup/mbv2_yolov3_face_last.weights"
metaPath = "./data/face.data"
if not os.path.exists(configPath):
raise ValueError("Invalid config path `" +
os.path.abspath(configPath)+"`")
if not os.path.exists(weightPath):
raise ValueError("Invalid weight path `" +
os.path.abspath(weightPath)+"`")
if not os.path.exists(metaPath):
raise ValueError("Invalid data file path `" +
os.path.abspath(metaPath)+"`")
if netMain is None:
netMain = darknet.load_net_custom(configPath.encode(
"ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
if metaMain is None:
metaMain = darknet.load_meta(metaPath.encode("ascii"))
if altNames is None:
try:
with open(metaPath) as metaFH:
metaContents = metaFH.read()
import re
match = re.search("names *= *(.*)$", metaContents,
re.IGNORECASE | re.MULTILINE)
if match:
result = match.group(1)
else:
result = None
try:
if os.path.exists(result):
with open(result) as namesFH:
namesList = namesFH.read().strip().split("\n")
altNames = [x.strip() for x in namesList]
except TypeError:
pass
except Exception:
pass
# Create an image we reuse for each detect
darknet_image = darknet.make_image(darknet.network_width(netMain),
darknet.network_height(netMain),3)
counter = 0
for parent, dir_names, file_names in os.walk(val_image_root):
for file_name in file_names:
if not file_name.lower().endswith('jpg'):
continue
im = cv2.imread(os.path.join(parent, file_name), cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
h, w, _ = im.shape
ratio_w = darknet.network_width(netMain) * 1.0 / w
ratio_h = darknet.network_height(netMain) * 1.0 / h
img_resized = cv2.resize(img_rgb,
(darknet.network_width(netMain),
darknet.network_height(netMain)),
interpolation=cv2.INTER_LINEAR)
darknet.copy_image_from_bytes(darknet_image, img_resized.tobytes())
detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.05, nms=0.3)
boxes = []
for detection in detections:
x, y, w, h, score = detection[2][0], \
detection[2][1], \
detection[2][2], \
detection[2][3], \
float(detection[1])
xmin, ymin, xmax, ymax = convertBack(
float(x) / ratio_w, float(y) / ratio_h, float(w) / ratio_w, float(h) / ratio_h)
boxes.append([xmin, ymin, xmax, ymax, score])
event_name = parent.split('/')[-1]
if not os.path.exists(os.path.join(val_result_txt_save_root, event_name)):
os.makedirs(os.path.join(val_result_txt_save_root, event_name))
fout = open(os.path.join(val_result_txt_save_root, event_name, file_name.split('.')[0] + '.txt'), 'w')
# if not os.path.exists(os.path.join(val_result_img_save_root, event_name)):
# os.makedirs(os.path.join(val_result_img_save_root, event_name))
# image = cvDrawBoxes(boxes, im, ratio_w, ratio_h)
# cv2.imwrite(os.path.join(val_result_img_save_root, event_name, file_name.split('.')[0] + '.jpg'), image)
fout.write(file_name.split('.')[0] + '\n')
fout.write(str(len(boxes)) + '\n')
for i in range(len(boxes)):
bbox = boxes[i]
fout.write('%d %d %d %d %.03f' % (math.floor(bbox[0]), math.floor(bbox[1]), math.ceil(bbox[2] - bbox[0]), math.ceil(bbox[3] - bbox[1]), bbox[4] if bbox[4] <= 1 else 1) + '\n')
fout.close()
counter += 1
print('[%d] %s is processed.' % (counter, file_name))