-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmodelsets.py
295 lines (204 loc) · 11.8 KB
/
modelsets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#coding:utf-8
'''
author:Wang Haibo
at: Pingan Tec.
email: [email protected]
!!!
代码中会有少量中文注释,无需在意
'''
from pruner import Pruner
__all__ = ["CifarModelZoo"]
class CifarModelZoo():
def __init__(self):
# resnet config
self.model_config = {"resnet18":[2,2,2,2],"resnet34":[3,4,6,3],"resnet50":[3,4,6,3]}
self.init_channels = 64
self.block_version = 2
self.support_model = ["simpleNet","DenseNet40","MobileNetV1","vgg19","resnet18","resnet34"]
# end
@classmethod
def getModel(cls,model_name=None,params=None):
if not isinstance(model_name,str) and not isinstance(params,dict):
raise TypeError("model_name must be str, params must be dict.")
if len(params)!=4:
raise ValueError("params error.")
if model_name not in cls().support_model:
raise ValueError(model_name+" not implemented in modelsets.")
return_func = None
if model_name=="simpleNet":
return_func = cls().simpleNet
elif model_name=="DenseNet40":
return_func = cls().DenseNet40
elif model_name=="MobileNetV1":
return_func = cls().MobileNetV1
elif model_name=="vgg19":
return_func = cls().vgg19
elif model_name=="resnet18":
return_func = cls().ResNet18
elif model_name=="resnet34":
return_func = cls().ResNet34
return return_func(inputs=params["inputs"],
is_train=params["is_train"],
reload_w=params["reload_w"],
num_classes=params["num_classes"])
def simpleNet(self,inputs=None,is_train=True,reload_w=None,num_classes=None):
model = Pruner(reload_file=reload_w)
k_size = 5
x = model._add_layer(inputs, mode='conv', out_c=32, k_size=k_size, strides=1, is_train=is_train)
x = model._add_layer(x, mode='conv', out_c=64, k_size=k_size, strides=2, is_train=is_train)
x1 = model._add_layer(x, mode='conv', out_c=64, k_size=k_size, strides=1, is_train=is_train)
x2 = model._add_layer(x, mode='conv', out_c=64, k_size=k_size, strides=1, is_train=is_train)
x = model.Add_layer(x1,x2)
x = model._add_layer(x, mode='conv', out_c=64, k_size=k_size, strides=1, is_train=is_train)
x = model._add_layer(x, mode='conv', out_c=96, k_size=k_size, strides=2, is_train=is_train)
x = model._add_layer(x, mode='conv', out_c=96, k_size=k_size, strides=1, is_train=is_train)
x = model._add_layer(x, mode='conv', out_c=128, k_size=k_size, strides=2, is_train=is_train)
x = model.gap_layer(x)
x = model._add_layer(x, mode="fc", out_c=num_classes, with_bn=False, act=None)
return x,model
def __resnet_block_v2(self,model, inputs, out_c, strides, is_train):
output = model.bn_act_layer(inputs,is_train=is_train)
if strides==2:
shortcut = model._add_layer(output, mode="conv", out_c=out_c, k_size=3, strides=2, with_bn=False,
act=None)
else:
shortcut = inputs
output = model._add_layer(output, mode="conv", out_c=out_c, k_size=3, strides=strides, with_bn=True,
is_train=is_train)
output = model._add_layer(output, mode="conv", out_c=out_c, k_size=3, strides=1, with_bn=False,
act=None)
output = model.Add_layer(shortcut, output)
return output
def __resnet_block_v1(self,model, inputs, out_c, strides, is_train):
output = model._add_layer(inputs, mode="conv", out_c=out_c, k_size=3, strides=strides, with_bn=True,
is_train=is_train)
output = model._add_layer(output, mode="conv", out_c=out_c, k_size=3, strides=1, with_bn=True,
is_train=is_train)
if strides==2:
shortcut = model._add_layer(inputs, mode="conv", out_c=out_c, k_size=3, strides=strides, with_bn=True,
is_train=is_train)
else:
shortcut = inputs
output = model.Add_layer(shortcut,output)
return output
def ResNet34(self,inputs=None,is_train=True,reload_w=None,num_classes=None):
model = Pruner(reload_file=reload_w)
num_block = self.model_config["resnet34"]
block_func = self.__resnet_block_v1 if self.block_version==1 else self.__resnet_block_v2
if self.block_version==1:
x = model._add_layer(inputs,mode="conv",out_c=self.init_channels,k_size=3,strides=1,with_bn=True,is_train=is_train)
else:
x = model._add_layer(inputs,mode="conv",out_c=self.init_channels,k_size=3,strides=1,with_bn=False,act=None)
# stage 1 out size = 32
for _ in range(num_block[0]):
x = block_func(model,inputs=x,out_c=self.init_channels,strides=1,is_train=is_train)
# stage 2 out_size = 16
x = block_func(model, inputs=x, out_c=self.init_channels*2, strides=2, is_train=is_train)
for _ in range(num_block[1]-1):
x = block_func(model, inputs=x, out_c=self.init_channels*2, strides=1, is_train=is_train)
# stage 3 out_size = 8
x = block_func(model, inputs=x, out_c=self.init_channels*4, strides=2, is_train=is_train)
for _ in range(num_block[2]-1):
x = block_func(model, inputs=x, out_c=self.init_channels*4, strides=1, is_train=is_train)
# stage 4 out_size = 4
x = block_func(model, inputs=x, out_c=self.init_channels*8, strides=2, is_train=is_train)
for _ in range(num_block[3]-1):
x = block_func(model, inputs=x, out_c=self.init_channels*8, strides=1, is_train=is_train)
if self.block_version==2:
x = model.bn_act_layer(x,is_train=is_train)
x = model.gap_layer(x)
x = model._add_layer(x,mode="fc",out_c=num_classes,act=None,with_bn=False)
return x,model
def ResNet18(self,inputs=None,is_train=True,reload_w=None,num_classes=None):
model = Pruner(reload_file=reload_w)
num_block = self.model_config["resnet18"]
block_func = self.__resnet_block_v1 if self.block_version==1 else self.__resnet_block_v2
if self.block_version==1:
x = model._add_layer(inputs,mode="conv",out_c=self.init_channels,k_size=3,strides=1,with_bn=True,is_train=is_train)
else:
x = model._add_layer(inputs,mode="conv",out_c=self.init_channels,k_size=3,strides=1,with_bn=False,act=None)
# stage 1 out size = 32
for _ in range(num_block[0]):
x = block_func(model,inputs=x,out_c=self.init_channels,strides=1,is_train=is_train)
# stage 2 out_size = 16
x = block_func(model, inputs=x, out_c=self.init_channels*2, strides=2, is_train=is_train)
for _ in range(num_block[1]-1):
x = block_func(model, inputs=x, out_c=self.init_channels*2, strides=1, is_train=is_train)
# stage 3 out_size = 8
x = block_func(model, inputs=x, out_c=self.init_channels*4, strides=2, is_train=is_train)
for _ in range(num_block[2]-1):
x = block_func(model, inputs=x, out_c=self.init_channels*4, strides=1, is_train=is_train)
# stage 4 out_size = 4
x = block_func(model, inputs=x, out_c=self.init_channels*8, strides=2, is_train=is_train)
for _ in range(num_block[3]-1):
x = block_func(model, inputs=x, out_c=self.init_channels*8, strides=1, is_train=is_train)
if self.block_version==2:
x = model.bn_act_layer(x,is_train=is_train)
x = model.gap_layer(x)
x = model._add_layer(x,mode="fc",out_c=num_classes,act=None,with_bn=False)
return x,model
def densenet_block(self,model,inputs=None,is_train=True):
def _add_dense_layer(in_):
in_c = in_.get_shape().as_list()[-1]
c = model.bn_act_layer(in_,is_train=is_train)
c = model._add_layer(c, mode="conv", out_c=12, k_size=3, strides=1, with_bn=False,act=None)
out = model.concat_layer([in_,c],3)
return out
for i in range(12):
inputs = _add_dense_layer(inputs)
return inputs
def densenet_trans(self,model,inputs=None,is_train=True):
in_c = inputs.get_shape().as_list()[-1]
c = model.bn_act_layer(inputs,is_train=is_train)
c = model._add_layer(c, mode="conv", out_c=in_c, k_size=1, strides=1, with_bn=False,act=None)
c = model.pool_layer(c,"avg",pool_size=2,strides=2)
return c
def DenseNet40(self,inputs=None,is_train=True,reload_w=None,num_classes=None):
model = Pruner(reload_file=reload_w)
# net header
x = model._add_layer(inputs, mode="conv", out_c=32, k_size=3, strides=1, with_bn=False,act=None)
# stage 1
x = self.densenet_block(model,x,is_train=is_train)
x = self.densenet_trans(model,x,is_train=is_train) #16
# stage 2
x = self.densenet_block(model,x,is_train=is_train)
x = self.densenet_trans(model,x,is_train=is_train) #8
# stage 3
x = self.densenet_block(model,x,is_train=is_train)
x = model.bn_act_layer(x,is_train=is_train)
x = model.gap_layer(x)
x = model._add_layer(x,mode="fc",out_c=num_classes,act=None,with_bn=False)
return x,model
def vgg19(self,inputs=None,is_train=True,reload_w=None,num_classes=None):
model = Pruner(reload_file=reload_w)
x = inputs
init_size = 64
for i in range(4):
x = model._add_layer(x, mode="conv", out_c=init_size*(2**i), k_size=3, strides=1, with_bn=False)
x = model._add_layer(x, mode="conv", out_c=init_size*(2**i), k_size=3, strides=1, with_bn=False)
x = model.pool_layer(x,"max",pool_size=2,strides=2)
x = model._add_layer(x, mode="conv", out_c=512, k_size=3, strides=1, with_bn=False)
x = model._add_layer(x, mode="conv", out_c=512, k_size=3, strides=1, with_bn=False)
x = model._add_layer(x, mode="conv", out_c=512, k_size=3, strides=1, with_bn=False)
x = model.gmp_layer(x)
x = model._add_layer(x, mode="fc", out_c=1024, with_bn=False)
x = model._add_layer(x, mode="fc", out_c=1024, with_bn=False)
x = model._add_layer(x, mode="fc", out_c=num_classes, with_bn=False,act=None)
return x,model
def MobileNetV1(self,inputs=None,is_train=None,reload_w=None,num_classes=None):
model = Pruner(reload_file=reload_w)
x = model._add_layer(inputs,mode="conv",out_c=32,k_size=3,strides=1)
x = model._add_layer(x, mode="dconv", out_c=64, k_size=3, strides=1,with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=128, k_size=3, strides=2,with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=128, k_size=3, strides=1,with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=256, k_size=3, strides=2,with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=256, k_size=3, strides=1,with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=512, k_size=3, strides=2,with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=512, k_size=3, strides=1, with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=512, k_size=3, strides=1, with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=512, k_size=3, strides=1, with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=512, k_size=3, strides=1, with_bn=True,is_train=is_train)
x = model._add_layer(x, mode="dconv", out_c=512, k_size=3, strides=1, with_bn=True,is_train=is_train)
x = model.gap_layer(x)
x = model._add_layer(x,mode="fc",out_c=num_classes,act=None)
return x,model