-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
120 lines (93 loc) · 3.58 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Imports
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# create fully connected Network
class NN(nn.Module):
def __init__(self,input_size , num_classes):
super(NN,self).__init__()
self.fc1 = nn.Linear(input_size,50)
self.fc2 = nn.Linear(50,num_classes)
def forward(self,x):
x = F.relu(self.fc1(x))
x= self.fc2(x)
return x
# CNN
class CNN(nn.Module):
def __init__(self,in_channels = 1, num_classes = 10):
super(CNN,self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=8,kernel_size=(3,3),stride=(1,1),padding=(1,1))
self.pool1 = nn.MaxPool2d(kernel_size=(2,2),stride = (2,2))
self.conv2 = nn.Conv2d(in_channels=8, out_channels=16,kernel_size=(3,3),stride=(1,1),padding=(1,1))
self.fc1 = nn.Linear(16*7*7,num_classes)
def forward(self,x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool1(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes =10
learning_rate = 0.001
batch_size = 64
num_epochs = 5
#Load Data
train_datasets = datasets.MNIST(root='dataset/',train =True,transform=transforms.ToTensor(), download = True)
train_loader = DataLoader(dataset=train_datasets, batch_size =batch_size,shuffle=True)
test_datasets = datasets.MNIST(root='dataset/',train =False,transform=transforms.ToTensor(), download = True)
test_loader = DataLoader(dataset= test_datasets,batch_size = batch_size, shuffle=True)
# Initialize Network
model = CNN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(),lr = learning_rate)
# Train Network
for epoch in range(num_epochs):
print(f"Epoch: {epoch}")
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# Get to correct shape, 28x28->784
# -1 will flatten all outer dimensions into one
# data = data.reshape(data.shape[0], -1)
# forward propagation
scores = model(data)
loss = criterion(scores, targets)
# zero previous gradients
optimizer.zero_grad()
# back-propagation
loss.backward()
# gradient descent or adam step
optimizer.step()
# check accuracy on training & test to see how good our model
def check_accuracy(loader,model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x,y in loader:
x = x.to(device =device)
y = y.to(device= device)
# x = x.reshape(x.shape[0],-1)
scores = model(x)
_,predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)* 100:.2f}')
model.train()
check_accuracy(train_loader,model)
check_accuracy(test_loader,model)