-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLenet5.py
133 lines (94 loc) · 3.68 KB
/
Lenet5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# imports
import torch
import torch.nn as nn
import torch.optim as optim
import torch.functional as F
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Lenet5 architecture
class lenet(nn.Module):
def __init__(self,in_channels = 1,num_classes = 10):
super(lenet, self).__init__()
self.in_channels = in_channels
self.num_classes =num_classes
self.conv1 = nn.Conv2d(in_channels = 1, out_channels = 6,
kernel_size = 5, stride = 1, padding = 0)
self.conv2 = nn.Conv2d(in_channels = 6, out_channels = 16,
kernel_size = 5, stride = 1, padding = 0)
self.conv3 = nn.Conv2d(in_channels = 16, out_channels = 120,
kernel_size = 5, stride = 1, padding = 0)
self.linear1 = nn.Linear(120, 84)
self.linear2 = nn.Linear(84, 10)
self.tanh = nn.Tanh()
self.avgpool = nn.AvgPool2d(kernel_size = 2, stride = 2)
def forward(self,x):
x = self.conv1(x)
x = self.tanh(x)
x = self.avgpool(x)
x = self.conv2(x)
x = self.tanh(x)
x = self.avgpool(x)
x = self.conv3(x)
x = self.tanh(x)
x = x.reshape(x.shape[0], -1)
x = self.linear1(x)
x = self.tanh(x)
x = self.linear2(x)
return x
# hyperparameters
# just for architecture testing
learning_rate = 0.001
batch_size = 64
num_epoch = 5
# Load data
train_datasets = datasets.MNIST(root='dataset/',train =True,transform=torchvision.transforms.Compose(
[torchvision.transforms.Resize(32), torchvision.transforms.ToTensor()]
), download = True)
train_loader = DataLoader(dataset=train_datasets, batch_size =batch_size,shuffle=True)
test_datasets = datasets.MNIST(root='dataset/',train =False,transform=torchvision.transforms.Compose(
[torchvision.transforms.Resize(32), torchvision.transforms.ToTensor()]
), download = True)
test_loader = DataLoader(dataset= test_datasets,batch_size = batch_size, shuffle=True)
# initialize n/w
model = lenet().to(device)
# Loss and optimizers
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(),lr = learning_rate)
# train n/w
for epoch in range(num_epoch):
for batch_idx , (data, target) in enumerate(train_loader):
data=data.to(device = device)
target = target.to(device = device)
# forward propagation
scores = model(data)
loss = criterion(scores,target)
# zero previous gradient
optimizer.zero_grad()
# backward propagation
loss.backward()
# optimizer step
optimizer.step()
# check accuracy
def check_accuracy(loader,model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x,y in loader:
x = x.to(device = device)
y = y.to(device= device)
scores = model(x)
_,predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)* 100:.2f}')
model.train()
check_accuracy(train_loader,model)
check_accuracy(test_loader,model)