-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInceptionNet.py
92 lines (70 loc) · 3.31 KB
/
InceptionNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import torch.nn as nn
class Googlenet(nn.Module):
def __init__(self,in_channels =3 ,num_classes = 1000):
super(Googlenet, self).__init__()
self.conv1 = conv_block(in_channels=in_channels,out_channels=64, kernel_size = 7, stride = 2, padding=3)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride = 2, padding=1)
self.conv2 = conv_block(64,192,kernel_size = 3, stride = 1, padding =1)
self.inception3a = Inception_block(192,64,96,128,16,32,32)
self.inception3b = Inception_block(256,128,128,192,32,96,64)
self.inception4a = Inception_block(480,192,96,208,16,48,64)
self.inception4b = Inception_block(512,160,112,224,24,64,64)
self.inception4c = Inception_block(512,128,128,256,24,64,64)
self.inception4d = Inception_block(512,112,144,288,32,64,64)
self.inception4e = Inception_block(528,256,160,320,32,128,128)
self.inception5a = Inception_block(832,256,160,320,32,128,128)
self.inception5b = Inception_block(832,384,192,384,48,128,128)
self.avg_pool = nn.AvgPool2d(kernel_size= 7 ,stride=1)
self.dropout = nn.Dropout(p=0.4)
self.fc1 = nn.Linear(1024,1000)
def forward(self,x):
x = self.conv1(x)
x = self.maxpool(x)
x = self.conv2(x)
x = self.maxpool(x)
x = self.inception3a(x)
x = self.inception3b(x)
x = self.maxpool(x)
x = self.inception4a(x)
x = self.inception4b(x)
x = self.inception4c(x)
x = self.inception4d(x)
x = self.inception4e(x)
x = self.maxpool(x)
x = self.inception5a(x)
x = self.inception5b(x)
x = self.avg_pool(x)
x = x.reshape(x.shape[0], -1)
x = self.dropout(x)
x = self.fc1(x)
return x
class Inception_block(nn.Module):
def __init__(self,in_channels,out_1x1,red_3x3, out_3x3, red_5x5, out_5x5, out_1x1pool):
super(Inception_block, self).__init__()
self.branch1 = conv_block(in_channels,out_1x1, kernel_size = 1)
self.branch2 = nn.Sequential(conv_block(in_channels, red_3x3, kernel_size = 1),
conv_block(red_3x3 , out_3x3, kernel_size = 3, stride = 1, padding=1))
self.branch3 = nn.Sequential(
conv_block(in_channels, red_5x5, kernel_size = 1),
conv_block(red_5x5, out_5x5, kernel_size = 5, padding= 2 )
)
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size= 3 , stride=1 ,padding =1),
conv_block(in_channels, out_1x1pool, kernel_size =1)
)
def forward(self,x):
# N * Filters * 28 * 28
return torch.cat([self.branch1(x),self.branch2(x), self.branch3(x), self.branch4(x)],1)
class conv_block(nn.Module):
def __init__(self,in_channels, out_channels, **kwargs):
super(conv_block,self).__init__()
self.conv = nn.Conv2d(in_channels = in_channels,out_channels= out_channels, **kwargs)
self.batchnorm = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self,x):
return self.relu(self.batchnorm(self.conv(x)))
if __name__ == "__main__":
x = torch.randn(3,3,224,224)
model = Googlenet()
print(model(x).shape)