-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDefinitions.tex
236 lines (217 loc) · 8.67 KB
/
Definitions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
% !TeX root = Project.tex
\section{List of Definitions}
Here I list some definitions which I did not have time to work into the main body of the text. The notation here mostly follows the style documented at the \href{https://en.wikipedia.org/wiki/List_of_mathematical_symbols}{Wikipedia} page for mathematical notation. Sets are normally denoted with capitals, $A, B, C\ldots$, and sets of [sub]sets in calligraphic font $\A, \B, \mathcal{C}\ldots$ Notably, the power set $\mathcal{P}(X)$ of a set X follows this pattern.
% 1
\begin{definition}[The Extended Real Line, $\eR$]\label{def:eRealLine}
$${\color{Magenta}\eR} \defeq \R \cup \{-\infty,\> +\infty\}$$
\end{definition}
% 2
\begin{definition}[$\sigma$-Algebra]\label{def:salgebra}
Given
\begin{itemize}
\item
A set, $X$,
\item
A family of subsets of $X$, $\A \subset \P(X)$.
\end{itemize}
Then $\A$ is a {\color{Magenta}\emph{$\sigma$-Algebra}} of $X$ $\logeq$
\begin{enumerate}[(i)]
\centering
\item
$\emptyset \in \A$ \vspace{2pt},
\item
$(A_j)_{j\in\N} \subset \A \Rightarrow \bigcup\limits_\N A_j \in \A$,
\item
$A \in \A \Rightarrow X\backslash{}A [\ \equiv A^c] \in \A$.
\end{enumerate}
\end{definition}
% 3
\begin{definition}[Measurable Space]\label{def:mablespace}
Given
\begin{itemize}
\item
A set, $X$,
\item
A \dref{def:salgebra}[\emph{$\sigma$-Algebra}] of $X$, $\A$.
\end{itemize}
Then
\begin{itemize}
\item
$\text{\it The ordered pair }(X, \A) \text{\it \ is a {\color{Magenta}Measurable Space}}$.
\item
$\text{ A set }\A \in \A \text{\it\ is {\color{Magenta}Measurable}}.$
\end{itemize}
\end{definition}
% 4
\begin{definition}[The $\sigma$-Algebra Generated by $\G, \sigma(\G)$]
Given
\begin{itemize}
\item
A set, $X$,
\item
$\G \subset \P(X)$.
\end{itemize}
Then {\color{Magenta}$\sigma(\G)$} is the {\color{Magenta}\emph{$\sigma$-Algebra Generated by $\G$}} $\logeq$
\begin{enumerate}[(i)]
\centering
\item
$\G \subset {\color{Magenta}\sigma(\G)}$,
\item
${\color{Magenta}\sigma(\G)} \text{\it\ is a } \dref{def:salgebra}[\sigma\text{\it -Algebra}] \text{\it\ of }X$,
\item
$\A \text{\it\ is a }\dref{def:salgebra}[\sigma\text{\it -Algebra}] \text{\it\ of } X \text{\it\ and } \G \subset \A \Rightarrow {\color{Magenta}\sigma(\G)} \subset \A.$
\end{enumerate}
\end{definition}
% 5
\begin{definition}[The family of half open rectangles in $\R^n$, $\J$]\label{def:rect}
$$\P(\R^n) \supset {\color{Magenta}\J} \defeq \{(a_1, b_1] \times (a_2, b_2] \times \dots \times (a_n, b_n]; \; \forall a_k, b_k \in \R\}$$
\end{definition}
% 6
\begin{definition}[The Borel $\sigma$-Algebra on $\R^n, \B(\R^n)$]\label{def:balgebra}
Fix $n \in \N$. Given the family of half open rectangles $\mathcal{J}^{o,n}$
$$ \text{\it The } \dref{def:salgebra}[\sigma\text{\it -Algebra}] \text{\it\ generated by } {\color{Magenta}\mathcal{J}^{o,n}}\text{\it\ is the } \text{\color{Magenta}\it Borel $\sigma$-Algebra} \text{\it\ on }\R^n$$
\end{definition}
% 7
\begin{definition}[The Extended Borel $\sigma$-Algebra on $\eR^n, \eB(\eR^n)$]
Fix $n \in \N$. $S^* \in {\color{Magenta}\eB} \logeq$
$$\exists B \in \B(\R) \text{\it\ and }\exists S \in \{\emptyset,\> +\infty,\> -\infty, \{+\infty, -\infty\}\}: \quad S^* = B \cup S$$
\end{definition}
% 8
\begin{definition}[Measures]\label{def:measure}
Given
\begin{itemize}
\item
A \dref{def:mablespace}[\emph{Measurable Space}], $(X, \A)$,
\item
A map, $\mu\colon \A \rightarrow \R$.
\end{itemize}
$\text{Then } {\color{Magenta}\mu} \text{ is a} {\color{Magenta}\emph{ Measure }} \text{on the \dref{def:mablespace}[\emph{Measurable Space}] } (X, \A) \logeq$
\begin{enumerate}[(i)]
\centering
\item
${\color{Magenta}\mu}(\emptyset) = 0$
\item
$A, B \in \A; \> A \cap B = \emptyset \quad \Rightarrow \quad {\color{Magenta}\mu}(A \cup B) = {\color{Magenta}\mu}(A) + {\color{Magenta}\mu}(B)$
\end{enumerate}
\end{definition}
% 9
\begin{definition}[Measure Space]\label{def:mspace}
Given
\begin{itemize}
\item
A \dref{def:mablespace}[\emph{Measurable Space}], $X$,
\item
A \dref{def:measure}[\emph{Measure}], $\mu$, on $(X, \A)$.
\end{itemize}
Then
$$\text{\it The ordered triple }(X, \A, \mu) \text{\it \ is a } {\color{Magenta}\emph{Measure Space}}.$$
\end{definition}
% 10
\begin{definition}[{[Discrete]} Probability Space]\label{def:pspace}
Given
\begin{itemize}
\item[\tiny$\otimes$]
$(\omega_n)_{n \in \N} = \Omega$ [\emph{for a Discrete Probability Space}],
\item
A \dref{def:mspace}[\emph{Measure Space}], $(\Omega, \A, p)$.
\end{itemize}
Then $(\Omega, \A, p)$ is a {\color{Magenta}\emph{[Discrete] Probability Space}} and {\color{Magenta}$p$} a {\color{Magenta}\emph{Probability Measure}} $\logeq$
\begin{itemize}
\centering
\item[]
$p(\Omega) = 1$.
\item[]
(ii*) \ \ $\bigcup\limits_\N \mu(\{\omega_n\}) = 1$ \emph{[Discrete]}.
\end{itemize}
\end{definition}
% 11
\begin{definition}[The Lebesgue Measure $\lambda^n$]\label{def:lmeasure}
Fix $n \in \N.$ Given
\begin{itemize}
\item
The \dref{def:mablespace}[\emph{Measurable Space}], $\bigl(\R^n, \B(\R^n)\bigr)$,
\item
A \dref{def:measure}[\emph{Measure}], $\lambda^n$, on $\bigl(\R^n, \B(\R^n)\bigr)$.
\end{itemize}
Then {\color{Magenta}$\lambda^n$} is the {\color{Magenta}\emph{Lebesgue Measure}} on $\bigl(\R^n, \B(\R^n)\bigr) \logeq$
$$\forall X \in \J\!, \quad {\color{Magenta}\lambda^n(X)} = \prod_{k=0}^n(b_k - a_k).$$
\end{definition}
% 12
\begin{definition}[Measurable Mapping]\label{def:mmap}
Given
\begin{itemize}
\item
\dref{def:mablespace}[\emph{Measurable Spaces}], $(X, \A)$ and $(X', \A')$,
\item
A map, $T\colon X \rightarrow X'$.
\end{itemize}
Then {\color{Magenta}$T$} is an {\color{Magenta}\emph{$(\A/\A')$-Measurable Map}} $\logeq$
$$ A' \in \A' \Rightarrow T^{-1}(A') \in \A.$$
\end{definition}
% 13
\begin{definition}[Image Measure]\label{def:imeasure}
Given
\begin{itemize}
\item
\dref{def:mablespace}[\emph{Measurable Spaces}], $(X, A), \> (X', \A')$,
\item
A \dref{def:mmap}[\emph{Measurable Mapping}], $T\colon X \rightarrow X'$,
\item
An \dref{def:measure}[\emph{Measure}], $\mu$, on $(X, A)$.
\end{itemize}
Then,
$${\color{magenta}\mu'\colon} \A' \rightarrow \R, \>\> A \mapsto \mu\bigl({T}^{-1}(A')\bigr) \text{\it\ is the {\color{Magenta}Image Measure} of $\mu$ under {$T$}}.$$
\end{definition}
% 14
\begin{definition}[Measurable {[Numerical]} Function]\label{def:mfun}
Fix $n \in \N$. Given
\begin{itemize}
\item
\dref{def:mspace}[\emph{Measure Space}], $(X, \A), \> (X', \A')$,
\item
An \dref{def:mmap}[\emph{$(\A/\A')$-Measurable Mapping}], ${\color{Magenta}u}\colon X \rightarrow X'$.
\end{itemize}
Then, if $(X', \A') = \bigl(\R, \B(\R)\bigr) \>\, [\,\bigl(\eR, \eB(\eR)\bigr)\,]$,
$${\color{Magenta}u} \text{\it\ is an {\color{Magenta}$(\A/\B [\eB])$-Measurable [Numerical] Function}, } {\color{Magenta}u}\colon X \rightarrow \R \> [\eR]$$
\end{definition}
% 15
\begin{definition}[{[Real-Valued]} Random Variable]\label{def:rvariable}
Given
\begin{itemize}
\item
A \dref{def:pspace}[\emph{Probability Space}], $(\Omega, \A, p)$, and a \dref{def:mablespace}[\emph{Measurable Space}], $(X[=\R], \A')$,
\item
An \dref{def:mmap}[\emph{$(\A/\A')$-Measurable Mapping}], ${\color{Magenta}Y}\colon\Omega \rightarrow X[= \R]$.
\end{itemize}
Then {\color{Magenta}$Y$} is a {\color{Magenta} \emph{[Real-Valued] Random Variable}}. The \dref{def:imeasure}[\emph{Image Measure}] of $p$ under $Y$ gives the {\color{Magenta}\emph{Probabilities}} of the {\color{Magenta}\emph{Events,} $E$} $\in \A'.$
\end{definition}
% 16
\begin{definition}[Simple Function]\label{def:sfun}
Given
\begin{itemize}
\item
A \dref{def:mablespace}[\emph{Measurable Space}], $(X, \A)$ along with $\measurespace$,
\item
An \dref{def:mfun}[\emph{$(\A, \B)$-Measurable Function}], $u: X \rightarrow \R.$
\end{itemize}
Then $u$ is a {\color{Magenta}\emph{Simple Function}} $\logeq$
$$\exists N \in \N: \> \exists(A_j)_{j=0}^N \text{\it\ with } A_j \in \A \text{\it\ and } \> \exists(c_j)_{j=0}^N \text{\it\ with } %
c_j \in \R \> : u(x) = \sum_{j=0}^N c_j \cdot \indi[A_j] \;\; \forall x \in X$$.
Given a measure, $\mu$, on the space $(X, \A)$; {\color{Magenta}\emph{the set of all Simple Functions}} on $(X, \A, \mu)$ is {\color{Magenta}\emph{$\E_\mu$}}. {\color{Magenta}\emph{the set of all non-negative Simple Functions}} is {\color{Magenta}\emph{$\E_\mu^+$}}.
\end{definition}
% 17
\begin{definition}[Integral of a Simple Function]\label{def:sint}
Given
\begin{itemize}
\item
A \dref{def:mspace}[\emph{Measure Space}], $(X, \A, \mu)$,
\item
A non-negative \dref{def:sfun}[\emph{Simple Function}], $s\colon X \rightarrow \R_{\geq 0}$,
\item
$N \in \N$,
\item
Sets, $(A_j)_{j=0}^N$ and $(c_j)_{j=0}^N : s(x) = \sum_{j=0}^N c_j \cdot \indi[A_j] \;\; \forall x \in X$.
\end{itemize}
Then {\color{Magenta}$I_\mu$(s)} is the {\color{Magenta}\emph{Integral of the Simple Function}}, $s$, where
$${\color{Magenta}I_\mu(s)} = \sum_{j=0}^N c_j \cdot \mu(A_j)$$
\end{definition}