-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
127 lines (99 loc) · 4.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import sys
import argparse
from datetime import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
from torch.autograd import Variable
from utils import getModel, WarmUpLR
from dataset import getDataLoader
import conf
def train(model, epoch, train_loader, loss_function, optimizer, warmup_scheduler, use_gpu):
model.train()
for batch_index, (sequences, labels) in enumerate(train_loader):
if epoch <= conf.WARM_EPOCH:
warmup_scheduler.step()
#print(sequences.size())
#sequences = sequences.reshape(sequences.size()[0], sequences.size()[1], sequences.size()[2] * sequences.size()[3] * sequences.size()[4])
sequences = Variable(sequences)
labels = Variable(labels)
if use_gpu:
labels = labels.cuda()
sequences = sequences.cuda()
optimizer.zero_grad()
#print(sequences.size())
outputs = model(sequences)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
print('Training Epoch: {epoch} [{trained_samples}/{total_samples}]\tLoss: {:0.4f}\tLR: {:0.6f}'.format(
loss.item(),
optimizer.param_groups[0]['lr'],
epoch=epoch,
trained_samples=batch_index * conf.TRAINING_BATCH_SIZE + len(sequences),
total_samples=len(train_loader.dataset)
))
return
def eval(model, epoch, val_loader, loss_function, use_gpu):
model.eval()
loss = 0.0
correct = 0.0
for (sequences, labels) in val_loader:
#sequences = sequences.reshape(sequences.size()[0], sequences.size()[1], sequences.size()[2] * sequences.size()[3] * sequences.size()[4])
sequences = Variable(sequences)
labels = Variable(labels)
if use_gpu:
sequences = sequences.cuda()
labels = labels.cuda()
outputs = model(sequences)
loss = loss_function(outputs, labels)
loss += loss.item()
_, preds = outputs.max(1)
correct += preds.eq(labels).sum()
print('Test set: Average loss: {:.4f}, Accuracy: {:.4f}'.format(
loss / len(val_loader.dataset),
correct.float() / len(val_loader.dataset)
))
return correct.float() / len(val_loader.dataset)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-model', type = str, required = True, help = 'model type')
parser.add_argument('-seq_dir', type = str, required = True, help = 'features dir')
parser.add_argument('-seq_length', type = int, required = True, help = 'sequences length')
parser.add_argument('-cnn_type', type = str, required = True, help = 'features extractor cnn type')
parser.add_argument('-gpu', action="store_true", help = 'use gpu or not')
args = parser.parse_args()
print(args.model)
print(args.gpu)
model = getModel(model_type = args.model, use_gpu = args.gpu)
train_loader = getDataLoader(args.seq_dir, args.seq_dir + '/train_metadata.txt', args.seq_length, args.cnn_type)
print('get train loader done')
val_loader = getDataLoader(args.seq_dir, args.seq_dir + '/test_metadata.txt', args.seq_length, args.cnn_type)
print('get val loader done')
checkpoints_path = os.path.join(conf.CHECKPOINTS_PATH, args.model, datetime.now().isoformat())
if not os.path.exists(checkpoints_path):
os.makedirs(checkpoints_path)
checkpoints_path = os.path.join(checkpoints_path, '{model}-{epoch}-{type}.pth')
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=conf.LEARNING_RATE, momentum=conf.MOMENTUM, weight_decay=conf.WEIGHT_DECAY)
train_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=conf.MILESTONES, gamma=conf.GAMMA)
iter_per_epoch = len(train_loader)
warmup_scheduler = WarmUpLR(optimizer, iter_per_epoch * conf.WARM_EPOCH)
best_acc = 0.0
for epoch in range(1, conf.EPOCH):
if epoch > conf.WARM_EPOCH:
train_scheduler.step(epoch)
train(model, epoch, train_loader, loss_function, optimizer, warmup_scheduler, args.gpu)
acc = eval(model, epoch, val_loader, loss_function, args.gpu)
if best_acc < acc:
torch.save(model.state_dict(), checkpoints_path.format(model=args.model, epoch=epoch, type='best'))
best_acc = acc
continue
#if not epoch % conf.SAVE_EPOCH:
# torch.save(model.state_dict(), checkpoints_path.format(model=args.model, epoch=epoch, type='regular'))