-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathbaseline.py
347 lines (310 loc) · 14.3 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from args import *
from data import get_dataset, set_seed_config, set_api_key, pkl_and_write, get_tf_idf_by_texts
import torch
from train_utils import train, test, get_optimizer, confidence_test, topk_test, to_inductive, batch_train, batch_test
from models import get_model
import numpy as np
import ipdb
import optuna
from torch.utils.tensorboard import SummaryWriter
import openai
from copy import deepcopy
import logging
import time
from torch_geometric.utils import index_to_mask
import optuna
import sys
from hyper import hyper_search
import os.path as osp
import torch.nn.functional as F
from torch_geometric.loader import NeighborLoader
from utils import delete_non_tensor_attributes
from ogb.nodeproppred import Evaluator
from collections import defaultdict
def train_pipeline_batch(seeds, args, epoch, data, writer, need_train, mode="main"):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
test_result_acc = []
early_stop_accum = 0
val_result_acc = []
out_res = []
best_val = 0
evaluator = Evaluator(name='ogbn-products')
if args.inductive:
data = to_inductive(data)
if mode == "main":
split_num = args.num_split
else:
split_num = args.sweep_split
split = 0
data.train_mask = data.train_masks[split]
data.val_mask = data.val_masks[split]
data.test_mask = data.test_masks[split]
data = delete_non_tensor_attributes(data)
assert split_num == 1
for seed in seeds:
set_seed_config(seed)
model = get_model(args).to(device)
optimizer, scheduler = get_optimizer(args, model)
loss_fn = torch.nn.CrossEntropyLoss()
best_val = 0
for split in range(split_num):
if args.normalize:
data.x = F.normalize(data.x, dim = -1)
input_nodes = torch.arange(data.x.shape[0])[data.train_mask]
# import ipdb; ipdb.set_trace()
data = data.to(device, 'x', 'y')
subgraph_loader = NeighborLoader(data, input_nodes=input_nodes,
num_neighbors=[15, 10, 5],
batch_size=1024, shuffle=True,
num_workers=4)
val_loader = NeighborLoader(data, input_nodes=None, batch_size=4096, shuffle=False,
num_neighbors=[-1], num_workers=1, persistent_workers=True)
# import ipdb; ipdb.set_trace()
for epoch in range(1, args.epochs + 1):
train_loss = batch_train(model, subgraph_loader, optimizer, device)
if scheduler:
scheduler.step()
val_acc = batch_test(model, data, evaluator, val_loader, device, data.val_mask)
print(f"Epoch {epoch}: Train loss: {train_loss}, Val acc: {val_acc}")
if val_acc > best_val:
best_val = val_acc
best_model = deepcopy(model)
early_stop_accum = 0
else:
if epoch >= args.early_stop_start:
early_stop_accum += 1
if early_stop_accum > args.early_stopping and epoch >= args.early_stop_start:
break
test_acc = batch_test(model, data, evaluator, val_loader, device, data.test_mask)
val_result_acc.append(val_acc)
test_result_acc.append(test_acc)
return test_result_acc, val_result_acc
def train_pipeline(seeds, args, epoch, data, writer, need_train, mode="main"):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
test_result_acc = []
early_stop_accum = 0
val_result_acc = []
out_res = []
if args.inductive:
data = to_inductive(data)
if mode == "main":
split_num = args.num_split
else:
split_num = args.sweep_split
for i, seed in enumerate(seeds):
best_val = 0
set_seed_config(seed)
model = get_model(args).to(device)
optimizer, scheduler = get_optimizer(args, model)
loss_fn = torch.nn.CrossEntropyLoss() # if hasattr(data, "xs"):
# data.x = data.xs[0]
if args.normalize:
data.x = F.normalize(data.x, dim = -1)
data = data.to(device)
data.train_mask = data.train_masks[i]
data.val_mask = data.val_masks[i]
data.test_mask = data.test_masks[i]
if 'ft' in args.data_format:
data.x = data.xs[i]
data.train_mask = data.train_masks[i]
data.val_mask = data.val_masks[i]
data.test_mask = data.test_masks[i]
if args.split == 'pl_fixed' or args.split == 'pl_random':
data.train_mask = data.train_masks[i]
data.val_mask = data.val_masks[i]
data.test_mask = data.test_masks[i]
data.backup_y = data.y
data.y = data.ys[i]
# import ipdb; ipdb.set_trace()
for i in range(epoch):
# ipdb.set_trace()
train_mask = data.train_mask
val_mask = data.val_mask
if need_train:
train_loss, val_loss, val_acc = train(model, data, optimizer, loss_fn, train_mask, val_mask)
if writer != None:
writer.add_scalar('Loss/train', train_loss, i)
writer.add_scalar('Loss/val', val_loss, i)
writer.add_scalar('Acc/val', val_acc[0], i)
if scheduler:
scheduler.step()
if args.output_intermediate:
print(f"Epoch {i}: Train loss: {train_loss}, Val loss: {val_loss}, Val acc: {val_acc[0]}")
if val_acc[0] > best_val:
best_val = val_acc[0]
best_model = deepcopy(model)
early_stop_accum = 0
else:
if i >= args.early_stop_start:
early_stop_accum += 1
if early_stop_accum > args.early_stopping and i >= args.early_stop_start:
break
else:
best_model = model
if 'pl' in args.split:
data.y = data.backup_y
test_acc, res = test(best_model, data, args.return_embeds, data.test_mask)
test_result_acc.append(test_acc)
val_result_acc.append(best_val)
out_res.append(res)
# del data
# del best_model
return test_result_acc, val_result_acc, out_res
def main(args = None, custom_args = None, save_best = False):
seeds = [i for i in range(args.seed_num)]
writer = SummaryWriter()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if custom_args != None:
args = replace_args_with_dict_values(args, custom_args)
data = get_dataset(args.seed_num, args.dataset, args.split, args.data_format, args.low_label_test)
seeds = [i for i in range(args.seed_num)]
best_model = None
best_val = 0
epoch = args.epochs
vars(args)['input_dim'] = data.x.shape[1]
vars(args)['num_classes'] = data.y.max().item() + 1
if args.model_name == 'LP':
need_train = False
else:
need_train = True
if not args.batchify and args.ensemble_string == "":
data.x = data.x.to(torch.float32)
test_result_acc, val_result_acc, out_res = train_pipeline(seeds, args, epoch, data, writer, need_train)
mean_test_acc = np.mean(test_result_acc) * 100
std_test_acc = np.std(test_result_acc) * 100
print(f"Test Accuracy: {mean_test_acc:.2f} ± {std_test_acc:.2f}")
print("Test acc: {}".format(test_result_acc))
pkl_and_write(out_res, f'./output/{args.model_name}_{args.dataset}_{args.data_format}.pkl')
elif args.ensemble_string != "":
feats = args.ensemble_string.split(";")
res = []
sep_test_acc = defaultdict(list)
labels = data.y
test_masks = data.test_masks
for feat in feats:
vars(args)['data_format'] = feat
data = get_dataset(args.seed_num, args.dataset, args.split, args.data_format, args.low_label_test)
vars(args)['input_dim'] = data.x.shape[1]
vars(args)['num_classes'] = data.y.max().item() + 1
# model = get_model(args).to(device)
# optimizer, scheduler = get_optimizer(args, model)
data.x = data.x.to(torch.float32)
test_result_acc, val_result_acc, out_res = train_pipeline(seeds, args, epoch, data, writer, need_train)
res.append(out_res)
sep_test_acc[feat] = test_result_acc
for key, value in sep_test_acc.items():
mean = np.mean(value) * 100
std = np.std(value) * 100
print(f"{key}: {mean:.2f} ± {std:.2f}")
ensemble_input = [[res[i][j] for i in range(len(feats))] for j in range(len(seeds))]
ensemble_helper(ensemble_input, labels, test_masks)
else:
test_result_acc, val_result_acc = train_pipeline_batch(seeds, args, epoch, data, writer, need_train)
mean_test_acc = np.mean(test_result_acc) * 100.0
std_test_acc = np.std(test_result_acc) * 100.0
print(f"Test Accuracy: {mean_test_acc:.4f} ± {std_test_acc:.4f}")
print("Test acc: {}".format(test_result_acc))
if save_best:
pkl_and_write(args, osp.join("./bestargs", f"{args.model_name}_{args.dataset}_{args.data_format}.pkl"))
writer.close()
def max_trial_callback(study, trial, max_try):
n_complete = len([t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE or t.state == optuna.trial.TrialState.RUNNING])
n_total_complete = len([t for t in study.trials])
if n_complete >= max_try or n_total_complete >= 2 * max_try:
study.stop()
torch.cuda.empty_cache()
def sweep(args = None):
# test_seeds = [i for i in range(args.seed_num)]
sweep_seeds = [0, 1, 2, 3, 4]
## get default command line args
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
optuna.logging.get_logger("optuna").addHandler(logging.StreamHandler(sys.stdout))
study_name = f"{args.dataset}_{args.model_name}_{args.data_format}_{args.split}"
study = optuna.create_study(study_name=study_name, storage=None, direction='maximize', load_if_exists=True)
param_f = hyper_search
sweep_round = args.sweep_round
study.optimize(lambda trial: sweep_run(trial, args, sweep_seeds, param_f, device), catch=(RuntimeError,), n_trials=sweep_round, callbacks=[lambda study, trial: max_trial_callback(study, trial, sweep_round)], show_progress_bar=True, gc_after_trial=True)
main(args=args, custom_args = study.best_trial.params, save_best = True)
print(study.best_trial.params)
def sweep_run(trial, args, sweep_seeds, param_f, device):
params = param_f(trial, args.data_format, args.model_name, args.dataset)
args = replace_args_with_dict_values(args, params)
data = get_dataset(args.seed_num, args.dataset, args.split, args.data_format, args.low_label_test).to(device)
best_model = None
best_val = 0
epoch = args.epochs
vars(args)['input_dim'] = data.x.shape[1]
vars(args)['num_classes'] = data.y.max().item() + 1
# model = get_model(args).to(device)
# optimizer, scheduler = get_optimizer(args, model)
# loss_fn = torch.nn.CrossEntropyLoss()
if args.model_name == 'LP':
need_train = False
else:
need_train = True
if not args.batchify and args.ensemble_string == "":
data.x = data.x.to(torch.float32)
test_result_acc, val_result_acc, out_res = train_pipeline(sweep_seeds, args, epoch, data, None, need_train, mode="sweep")
elif args.ensemble_string != "":
feats = args.ensemble_string.split(";")
res = []
sep_test_acc = defaultdict(list)
labels = data.y
test_masks = data.test_masks
for feat in feats:
vars(args)['data_format'] = feat
data = get_dataset(args.seed_num, args.dataset, args.split, args.data_format, args.low_label_test)
vars(args)['input_dim'] = data.x.shape[1]
vars(args)['num_classes'] = data.y.max().item() + 1
# model = get_model(args).to(device)
# optimizer, scheduler = get_optimizer(args, model)
data.x = data.x.to(torch.float32)
test_result_acc, val_result_acc, out_res = train_pipeline(sweep_seeds, args, epoch, data, None, need_train, mode="sweep")
res.append(out_res)
sep_test_acc[feat] = test_result_acc
for key, value in sep_test_acc.items():
print(f"{key}: {np.mean(value):.4f} ± {np.std(value):.4f}")
ensemble_input = [[res[i][j] for i in range(len(feats))] for j in range(len(sweep_seeds))]
mean_test_acc, _ = ensemble_helper(ensemble_input, labels, test_masks)
return mean_test_acc
else:
test_result_acc, val_result_acc = train_pipeline_batch(seeds, args, epoch, data, writer, need_train, mode="sweep")
mean_test_acc = np.mean(test_result_acc)
std_test_acc = np.std(test_result_acc)
print(f"Test Accuracy: {mean_test_acc} ± {std_test_acc}")
# mean_val_acc = np.mean(val_result_acc)
# std_val_acc = np.std(val_result_acc)
# print(f"Val Accuracy: {mean_val_acc} ± {std_val_acc}")
return mean_test_acc
@torch.no_grad()
def ensemble_helper(logits, labels, test_masks):
seeds_num = len(logits)
accs = []
for i in range(seeds_num):
test_mask = test_masks[i].cpu()
this_seed_logits = logits[i]
avg_logits = sum(this_seed_logits) / len(this_seed_logits)
pred = torch.argmax(avg_logits, dim=1).cpu()
labels = labels.cpu()
acc = torch.sum(pred[test_mask] == labels[test_mask]).item() / len(labels[test_mask])
accs.append(acc)
mean_test_acc = np.mean(accs) * 100.0
std_test_acc = np.std(accs) * 100.0
print(f"Ensemble Accuracy: {mean_test_acc:.2f} ± {std_test_acc:.2f}")
return mean_test_acc, std_test_acc
if __name__ == '__main__':
current_time = int(time.time())
logging.basicConfig(filename='./logs/{}.log'.format(current_time),
filemode='a',
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
datefmt='%H:%M:%S',
level=logging.INFO)
# set_seed_config(42)
## get mode: sweep or main
args = get_command_line_args()
set_api_key()
# param_search()
if args.mode == "main":
main(args = args)
else:
sweep(args = args)