-
Notifications
You must be signed in to change notification settings - Fork 67
/
swemmoon.cpp
1935 lines (1830 loc) · 61.9 KB
/
swemmoon.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* SWISSEPH
*
* Steve Moshier's analytical lunar ephemeris
**************************************************************/
/* Copyright (C) 1997 - 2021 Astrodienst AG, Switzerland. All rights reserved.
License conditions
------------------
This file is part of Swiss Ephemeris.
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing.
Swiss Ephemeris is made available by its authors under a dual licensing
system. The software developer, who uses any part of Swiss Ephemeris
in his or her software, must choose between one of the two license models,
which are
a) GNU Affero General Public License (AGPL)
b) Swiss Ephemeris Professional License
The choice must be made before the software developer distributes software
containing parts of Swiss Ephemeris to others, and before any public
service using the developed software is activated.
If the developer choses the AGPL software license, he or she must fulfill
the conditions of that license, which includes the obligation to place his
or her whole software project under the AGPL or a compatible license.
See https://www.gnu.org/licenses/agpl-3.0.html
If the developer choses the Swiss Ephemeris Professional license,
he must follow the instructions as found in http://www.astro.com/swisseph/
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
and sign the corresponding license contract.
The License grants you the right to use, copy, modify and redistribute
Swiss Ephemeris, but only under certain conditions described in the License.
Among other things, the License requires that the copyright notices and
this notice be preserved on all copies.
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
The authors of Swiss Ephemeris have no control or influence over any of
the derived works, i.e. over software or services created by other
programmers which use Swiss Ephemeris functions.
The names of the authors or of the copyright holder (Astrodienst) must not
be used for promoting any software, product or service which uses or contains
the Swiss Ephemeris. This copyright notice is the ONLY place where the
names of the authors can legally appear, except in cases where they have
given special permission in writing.
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
for promoting such software, products or services.
*/
/*
* Expansions for the geocentric ecliptic longitude,
* latitude, and distance of the Moon referred to the mean equinox
* and ecliptic of date.
*
* This version of cmoon.c adjusts the ELP2000-85 analytical Lunar
* theory of Chapront-Touze and Chapront to fit the Jet Propulsion
* Laboratory's DE404 long ephemeris on the interval from 3000 B.C.
* to 3000 A.D.
*
* The fit is much better in the remote past and future if
* secular terms are included in the arguments of the oscillatory
* perturbations. Such adjustments cannot easily be incorporated
* into the 1991 lunar tables. In this program the traditional
* literal arguments are used instead, with mean elements adjusted
* for a best fit to the reference ephemeris.
*
* This program omits many oscillatory terms from the analytical
* theory which, if they were included, would yield a much higher
* accuracy for modern dates. Detailed statistics of the precision
* are given in the table below. Comparing at 64-day intervals
* over the period -3000 to +3000, the maximum discrepancies noted
* were 7" longitude, 5" latitude, and 5 x 10^-8 au radius.
* The expressions used for precession in this comparision were
* those of Simon et al (1994).
*
* The adjusted coefficients were found by an unweighted least squares
* fit to the numerical ephemeris in the mentioned test interval.
* The approximation error increases rapidly outside this interval.
* J. Chapront (1994) has described the basic fitting procedure.
*
* A major change from DE200 to DE404 is in the coefficient
* of tidal acceleration of the Moon, which causes the Moon's
* longitude to depart by about -0.9" per century squared
* from DE200. Uncertainty in this quantity continues to
* be the limiting factor in long term projections of the Moon's
* ephemeris.
*
* Since the Lunar theory is cast in the ecliptic of date, it makes
* some difference what formula you use for precession. The adjustment
* to DE404 was carried out relative to the mean equinox and ecliptic
* of date as defined in Williams (1994). An earlier version of this
* program used the precession given by Simon et al (1994). The difference
* between these two precession formulas amounts to about 12" in Lunar
* longitude at 3000 B.C.
*
* Maximum deviations between DE404 and this program
* in a set of 34274 samples spaced 64 days apart
*
* Interval Longitude Latitude Radius
* Julian Year arc sec arc sec 10^-8 au
* -3000 to -2500 5.66 4.66 4.93
* -2500 to -2000 5.49 3.98 4.56
* -2000 to -1500 6.98 4.17 4.81
* -1500 to -1000 5.74 3.53 4.87
* -1000 to -500 5.95 3.42 4.67
* -500 to 0 4.94 3.07 4.04
* 0 to 500 4.42 2.65 4.55
* 500 to 1000 5.68 3.30 3.99
* 1000 to 1500 4.32 3.21 3.83
* 1500 to 2000 2.70 2.69 3.71
* 2000 to 2500 3.35 2.32 3.85
* 2500 to 3000 4.62 2.39 4.11
*
*
*
* References:
*
* James G. Williams, "Contributions to the Earth's obliquity rate,
* precession, and nutation," Astron. J. 108, 711-724 (1994)
*
* DE403 and DE404 ephemerides by E. M. Standish, X. X. Newhall, and
* J. G. Williams are at the JPL computer site navigator.jpl.nasa.gov.
*
* J. L. Simon, P. Bretagnon, J. Chapront, M. Chapront-Touze', G. Francou,
* and J. Laskar, "Numerical Expressions for precession formulae and
* mean elements for the Moon and the planets," Astronomy and Astrophysics
* 282, 663-683 (1994)
*
* P. Bretagnon and Francou, G., "Planetary theories in rectangular
* and spherical variables. VSOP87 solutions," Astronomy and
* Astrophysics 202, 309-315 (1988)
*
* M. Chapront-Touze' and J. Chapront, "ELP2000-85: a semi-analytical
* lunar ephemeris adequate for historical times," Astronomy and
* Astrophysics 190, 342-352 (1988).
*
* M. Chapront-Touze' and J. Chapront, _Lunar Tables and
* Programs from 4000 B.C. to A.D. 8000_, Willmann-Bell (1991)
*
* J. Laskar, "Secular terms of classical planetary theories
* using the results of general theory," Astronomy and Astrophysics
* 157, 59070 (1986)
*
* S. L. Moshier, "Comparison of a 7000-year lunar ephemeris
* with analytical theory," Astronomy and Astrophysics 262,
* 613-616 (1992)
*
* J. Chapront, "Representation of planetary ephemerides by frequency
* analysis. Application to the five outer planets," Astronomy and
* Astrophysics Suppl. Ser. 109, 181-192 (1994)
*
*
* Entry swi_moshmoon2() returns the geometric position of the Moon
* relative to the Earth. Its calling procedure is as follows:
*
* double JD; input Julian Ephemeris Date
* double pol[3]; output ecliptic polar coordinatees in radians and au
* pol[0] longitude, pol[1] latitude, pol[2] radius
* swi_moshmoon2( JD, pol );
*
* - S. L. Moshier, August, 1991
* DE200 fit: July, 1992
* DE404 fit: October, 1995
*
* Dieter Koch: adaptation to SWISSEPH, April 1996
* 18-feb-2006 replaced LP by SWELP because of name collision
*/
#include "astrolog.h"
#ifdef SWISS
#include <string.h>
#include "swephexp.h"
#include "sweph.h"
#include "swephlib.h"
static void mean_elements(void);
static void mean_elements_pl(void);
static double mods3600(double x);
static void ecldat_equ2000(double tjd, double *xpm);
static void chewm(const short *pt, int nlines, int nangles,
int typflg, double *ans );
static void sscc(int k, double arg, int n );
static void moon1(void);
static void moon2(void);
static void moon3(void);
static void moon4(void);
#ifdef MOSH_MOON_200
/* The following coefficients were calculated by a simultaneous least
* squares fit between the analytical theory and the continued DE200
* numerically integrated ephemeris from 9000 BC to 13000 AD.
* See references to the array z[] later on in the program.
* The 71 coefficients were estimated from 42,529 Lunar positions.
*/
static const double z[] = {
-1.225346551567e+001, /* F, t^2 */
-1.096676093208e-003, /* F, t^3 */
-2.165750777942e-006, /* F, t^4 */
-2.790392351314e-009, /* F, t^5 */
4.189032191814e-011, /* F, t^6 */
4.474984866301e-013, /* F, t^7 */
3.239398410335e+001, /* l, t^2 */
5.185305877294e-002, /* l, t^3 */
-2.536291235258e-004, /* l, t^4 */
-2.506365935364e-008, /* l, t^5 */
3.452144225877e-011, /* l, t^6 */
-1.755312760154e-012, /* l, t^7 */
-5.870522364514e+000, /* D, t^2 */
6.493037519768e-003, /* D, t^3 */
-3.702060118571e-005, /* D, t^4 */
2.560078201452e-009, /* D, t^5 */
2.555243317839e-011, /* D, t^6 */
-3.207663637426e-013, /* D, t^7 */
-4.776684245026e+000, /* L, t^2 */
6.580112707824e-003, /* L, t^3 */
-6.073960534117e-005, /* L, t^4 */
-1.024222633731e-008, /* L, t^5 */
2.235210987108e-010, /* L, t^6 */
7.200592540556e-014, /* L, t^7 */
-8.552017636339e+001, /* t^2 cos(18V - 16E - l) */
-2.055794304596e+002, /* t^2 sin(18V - 16E - l) */
-1.097555241866e+000, /* t^3 cos(18V - 16E - l) */
5.219423171002e-001, /* t^3 sin(18V - 16E - l) */
2.088802640755e-003, /* t^4 cos(18V - 16E - l) */
4.616541527921e-003, /* t^4 sin(18V - 16E - l) */
4.794930645807e+000, /* t^2 cos(10V - 3E - l) */
-4.595134364283e+001, /* t^2 sin(10V - 3E - l) */
-6.659812174691e-002, /* t^3 cos(10V - 3E - l) */
-2.570048828246e-001, /* t^3 sin(10V - 3E - l) */
6.229863046223e-004, /* t^4 cos(10V - 3E - l) */
5.504368344700e-003, /* t^4 sin(10V - 3E - l) */
-3.084830597278e+000, /* t^2 cos(8V - 13E) */
-1.000471012253e+001, /* t^2 sin(8V - 13E) */
6.590112074510e-002, /* t^3 cos(8V - 13E) */
-3.212573348278e-003, /* t^3 sin(8V - 13E) */
5.409038312567e-004, /* t^4 cos(8V - 13E) */
1.293377988163e-003, /* t^4 sin(8V - 13E) */
2.311794636111e+001, /* t^2 cos(4E - 8M + 3J) */
-3.157036220040e+000, /* t^2 sin(4E - 8M + 3J) */
-3.019293162417e+000, /* t^2 cos(18V - 16E) */
-9.211526858975e+000, /* t^2 sin(18V - 16E) */
-4.993704215784e-002, /* t^3 cos(18V - 16E) */
2.991187525454e-002, /* t^3 sin(18V - 16E) */
-3.827414182969e+000, /* t^2 cos(18V - 16E - 2l) */
-9.891527703219e+000, /* t^2 sin(18V - 16E - 2l) */
-5.322093802878e-002, /* t^3 cos(18V - 16E - 2l) */
3.164702647371e-002, /* t^3 sin(18V - 16E - 2l) */
7.713905234217e+000, /* t^2 cos(2J - 5S) */
-6.077986950734e+000, /* t^3 sin(2J - 5S) */
-1.278232501462e-001, /* t^2 cos(L - F) */
4.760967236383e-001, /* t^2 sin(L - F) */
-6.759005756460e-001, /* t^3 sin(l') */
1.655727996357e-003, /* t^4 sin(l') */
1.646526117252e-001, /* t^3 sin(2D - l') */
-4.167078100233e-004, /* t^4 sin(2D - l') */
2.067529538504e-001, /* t^3 sin(2D - l' - l) */
-5.219127398748e-004, /* t^4 sin(2D - l' - l) */
-1.526335222289e-001, /* t^3 sin(l' - l) */
-1.120545131358e-001, /* t^3 sin(l' + l) */
4.619472391553e-002, /* t^3 sin(2D - 2l') */
4.863621236157e-004, /* t^4 sin(2D - 2l') */
-4.280059182608e-002, /* t^3 sin(2l') */
-4.328378207833e-004, /* t^4 sin(2l') */
-8.371028286974e-003, /* t^3 sin(2D - l) */
4.089447328174e-002, /* t^3 sin(2D - 2l' - l) */
-1.238363006354e-002, /* t^3 sin(2D + 2l' - l) */
};
#else
/* The following coefficients were calculated by a simultaneous least
* squares fit between the analytical theory and DE404 on the finite
* interval from -3000 to +3000.
* The coefficients were estimated from 34,247 Lunar positions.
*/
static const double z[] = {
/* The following are scaled in arc seconds, time in Julian centuries.
They replace the corresponding terms in the mean elements. */
-1.312045233711e+01, /* F, t^2 */
-1.138215912580e-03, /* F, t^3 */
-9.646018347184e-06, /* F, t^4 */
3.146734198839e+01, /* l, t^2 */
4.768357585780e-02, /* l, t^3 */
-3.421689790404e-04, /* l, t^4 */
-6.847070905410e+00, /* D, t^2 */
-5.834100476561e-03, /* D, t^3 */
-2.905334122698e-04, /* D, t^4 */
-5.663161722088e+00, /* L, t^2 */
5.722859298199e-03, /* L, t^3 */
-8.466472828815e-05, /* L, t^4 */
/* The following longitude terms are in arc seconds times 10^5. */
-8.429817796435e+01, /* t^2 cos(18V - 16E - l) */
-2.072552484689e+02, /* t^2 sin(18V - 16E - l) */
7.876842214863e+00, /* t^2 cos(10V - 3E - l) */
1.836463749022e+00, /* t^2 sin(10V - 3E - l) */
-1.557471855361e+01, /* t^2 cos(8V - 13E) */
-2.006969124724e+01, /* t^2 sin(8V - 13E) */
2.152670284757e+01, /* t^2 cos(4E - 8M + 3J) */
-6.179946916139e+00, /* t^2 sin(4E - 8M + 3J) */
-9.070028191196e-01, /* t^2 cos(18V - 16E) */
-1.270848233038e+01, /* t^2 sin(18V - 16E) */
-2.145589319058e+00, /* t^2 cos(2J - 5S) */
1.381936399935e+01, /* t^2 sin(2J - 5S) */
-1.999840061168e+00, /* t^3 sin(l') */
};
#endif /* ! MOSH_MOON_200 */
/* Perturbation tables
*/
#define NLR 118
static const short LR[8*NLR] = {
/*
Longitude Radius
D l' l F 1" .0001" 1km .0001km */
0, 0, 1, 0, 22639, 5858,-20905,-3550,
2, 0,-1, 0, 4586, 4383, -3699,-1109,
2, 0, 0, 0, 2369, 9139, -2955,-9676,
0, 0, 2, 0, 769, 257, -569,-9251,
0, 1, 0, 0, -666,-4171, 48, 8883,
0, 0, 0, 2, -411,-5957, -3,-1483,
2, 0,-2, 0, 211, 6556, 246, 1585,
2,-1,-1, 0, 205, 4358, -152,-1377,
2, 0, 1, 0, 191, 9562, -170,-7331,
2,-1, 0, 0, 164, 7285, -204,-5860,
0, 1,-1, 0, -147,-3213, -129,-6201,
1, 0, 0, 0, -124,-9881, 108, 7427,
0, 1, 1, 0, -109,-3803, 104, 7552,
2, 0, 0,-2, 55, 1771, 10, 3211,
0, 0, 1, 2, -45, -996, 0, 0,
0, 0, 1,-2, 39, 5333, 79, 6606,
4, 0,-1, 0, 38, 4298, -34,-7825,
0, 0, 3, 0, 36, 1238, -23,-2104,
4, 0,-2, 0, 30, 7726, -21,-6363,
2, 1,-1, 0, -28,-3971, 24, 2085,
2, 1, 0, 0, -24,-3582, 30, 8238,
1, 0,-1, 0, -18,-5847, -8,-3791,
1, 1, 0, 0, 17, 9545, -16,-6747,
2,-1, 1, 0, 14, 5303, -12,-8314,
2, 0, 2, 0, 14, 3797, -10,-4448,
4, 0, 0, 0, 13, 8991, -11,-6500,
2, 0,-3, 0, 13, 1941, 14, 4027,
0, 1,-2, 0, -9,-6791, -7, -27,
2, 0,-1, 2, -9,-3659, 0, 7740,
2,-1,-2, 0, 8, 6055, 10, 562,
1, 0, 1, 0, -8,-4531, 6, 3220,
2,-2, 0, 0, 8, 502, -9,-8845,
0, 1, 2, 0, -7,-6302, 5, 7509,
0, 2, 0, 0, -7,-4475, 1, 657,
2,-2,-1, 0, 7, 3712, -4,-9501,
2, 0, 1,-2, -6,-3832, 4, 1311,
2, 0, 0, 2, -5,-7416, 0, 0,
4,-1,-1, 0, 4, 3740, -3,-9580,
0, 0, 2, 2, -3,-9976, 0, 0,
3, 0,-1, 0, -3,-2097, 3, 2582,
2, 1, 1, 0, -2,-9145, 2, 6164,
4,-1,-2, 0, 2, 7319, -1,-8970,
0, 2,-1, 0, -2,-5679, -2,-1171,
2, 2,-1, 0, -2,-5212, 2, 3536,
2, 1,-2, 0, 2, 4889, 0, 1437,
2,-1, 0,-2, 2, 1461, 0, 6571,
4, 0, 1, 0, 1, 9777, -1,-4226,
0, 0, 4, 0, 1, 9337, -1,-1169,
4,-1, 0, 0, 1, 8708, -1,-5714,
1, 0,-2, 0, -1,-7530, -1,-7385,
2, 1, 0,-2, -1,-4372, 0,-1357,
0, 0, 2,-2, -1,-3726, -4,-4212,
1, 1, 1, 0, 1, 2618, 0,-9333,
3, 0,-2, 0, -1,-2241, 0, 8624,
4, 0,-3, 0, 1, 1868, 0,-5142,
2,-1, 2, 0, 1, 1770, 0,-8488,
0, 2, 1, 0, -1,-1617, 1, 1655,
1, 1,-1, 0, 1, 777, 0, 8512,
2, 0, 3, 0, 1, 595, 0,-6697,
2, 0, 1, 2, 0,-9902, 0, 0,
2, 0,-4, 0, 0, 9483, 0, 7785,
2,-2, 1, 0, 0, 7517, 0,-6575,
0, 1,-3, 0, 0,-6694, 0,-4224,
4, 1,-1, 0, 0,-6352, 0, 5788,
1, 0, 2, 0, 0,-5840, 0, 3785,
1, 0, 0,-2, 0,-5833, 0,-7956,
6, 0,-2, 0, 0, 5716, 0,-4225,
2, 0,-2,-2, 0,-5606, 0, 4726,
1,-1, 0, 0, 0,-5569, 0, 4976,
0, 1, 3, 0, 0,-5459, 0, 3551,
2, 0,-2, 2, 0,-5357, 0, 7740,
2, 0,-1,-2, 0, 1790, 8, 7516,
3, 0, 0, 0, 0, 4042, -1,-4189,
2,-1,-3, 0, 0, 4784, 0, 4950,
2,-1, 3, 0, 0, 932, 0, -585,
2, 0, 2,-2, 0,-4538, 0, 2840,
2,-1,-1, 2, 0,-4262, 0, 373,
0, 0, 0, 4, 0, 4203, 0, 0,
0, 1, 0, 2, 0, 4134, 0,-1580,
6, 0,-1, 0, 0, 3945, 0,-2866,
2,-1, 0, 2, 0,-3821, 0, 0,
2,-1, 1,-2, 0,-3745, 0, 2094,
4, 1,-2, 0, 0,-3576, 0, 2370,
1, 1,-2, 0, 0, 3497, 0, 3323,
2,-3, 0, 0, 0, 3398, 0,-4107,
0, 0, 3, 2, 0,-3286, 0, 0,
4,-2,-1, 0, 0,-3087, 0,-2790,
0, 1,-1,-2, 0, 3015, 0, 0,
4, 0,-1,-2, 0, 3009, 0,-3218,
2,-2,-2, 0, 0, 2942, 0, 3430,
6, 0,-3, 0, 0, 2925, 0,-1832,
2, 1, 2, 0, 0,-2902, 0, 2125,
4, 1, 0, 0, 0,-2891, 0, 2445,
4,-1, 1, 0, 0, 2825, 0,-2029,
3, 1,-1, 0, 0, 2737, 0,-2126,
0, 1, 1, 2, 0, 2634, 0, 0,
1, 0, 0, 2, 0, 2543, 0, 0,
3, 0, 0,-2, 0,-2530, 0, 2010,
2, 2,-2, 0, 0,-2499, 0,-1089,
2,-3,-1, 0, 0, 2469, 0,-1481,
3,-1,-1, 0, 0,-2314, 0, 2556,
4, 0, 2, 0, 0, 2185, 0,-1392,
4, 0,-1, 2, 0,-2013, 0, 0,
0, 2,-2, 0, 0,-1931, 0, 0,
2, 2, 0, 0, 0,-1858, 0, 0,
2, 1,-3, 0, 0, 1762, 0, 0,
4, 0,-2, 2, 0,-1698, 0, 0,
4,-2,-2, 0, 0, 1578, 0,-1083,
4,-2, 0, 0, 0, 1522, 0,-1281,
3, 1, 0, 0, 0, 1499, 0,-1077,
1,-1,-1, 0, 0,-1364, 0, 1141,
1,-3, 0, 0, 0,-1281, 0, 0,
6, 0, 0, 0, 0, 1261, 0, -859,
2, 0, 2, 2, 0,-1239, 0, 0,
1,-1, 1, 0, 0,-1207, 0, 1100,
0, 0, 5, 0, 0, 1110, 0, -589,
0, 3, 0, 0, 0,-1013, 0, 213,
4,-1,-3, 0, 0, 998, 0, 0,
};
#ifdef MOSH_MOON_200
#define NMB 56
static const short MB[6*NMB] = {
/*
Latitude
D l' l F 1" .0001" */
0, 0, 0, 1,18461, 2387,
0, 0, 1, 1, 1010, 1671,
0, 0, 1,-1, 999, 6936,
2, 0, 0,-1, 623, 6524,
2, 0,-1, 1, 199, 4837,
2, 0,-1,-1, 166, 5741,
2, 0, 0, 1, 117, 2607,
0, 0, 2, 1, 61, 9120,
2, 0, 1,-1, 33, 3572,
0, 0, 2,-1, 31, 7597,
2,-1, 0,-1, 29, 5766,
2, 0,-2,-1, 15, 5663,
2, 0, 1, 1, 15, 1216,
2, 1, 0,-1, -12, -941,
2,-1,-1, 1, 8, 8681,
2,-1, 0, 1, 7, 9586,
2,-1,-1,-1, 7, 4346,
0, 1,-1,-1, -6,-7314,
4, 0,-1,-1, 6, 5796,
0, 1, 0, 1, -6,-4601,
0, 0, 0, 3, -6,-2965,
0, 1,-1, 1, -5,-6324,
1, 0, 0, 1, -5,-3684,
0, 1, 1, 1, -5,-3113,
0, 1, 1,-1, -5, -759,
0, 1, 0,-1, -4,-8396,
1, 0, 0,-1, -4,-8057,
0, 0, 3, 1, 3, 9841,
4, 0, 0,-1, 3, 6745,
4, 0,-1, 1, 2, 9985,
0, 0, 1,-3, 2, 7986,
4, 0,-2, 1, 2, 4139,
2, 0, 0,-3, 2, 1863,
2, 0, 2,-1, 2, 1462,
2,-1, 1,-1, 1, 7660,
2, 0,-2, 1, -1,-6244,
0, 0, 3,-1, 1, 5813,
2, 0, 2, 1, 1, 5198,
2, 0,-3,-1, 1, 5156,
2, 1,-1, 1, -1,-3178,
2, 1, 0, 1, -1,-2643,
4, 0, 0, 1, 1, 1919,
2,-1, 1, 1, 1, 1346,
2,-2, 0,-1, 1, 859,
0, 0, 1, 3, -1, -194,
2, 1, 1,-1, 0,-8227,
1, 1, 0,-1, 0, 8042,
1, 1, 0, 1, 0, 8026,
0, 1,-2,-1, 0,-7932,
2, 1,-1,-1, 0,-7910,
1, 0, 1, 1, 0,-6674,
2,-1,-2,-1, 0, 6502,
0, 1, 2, 1, 0,-6388,
4, 0,-2,-1, 0, 6337,
4,-1,-1,-1, 0, 5958,
1, 0, 1,-1, 0,-5889,
};
#else
#define NMB 77
static const short MB[6*NMB] = {
/*
Latitude
D l' l F 1" .0001" */
0, 0, 0, 1,18461, 2387,
0, 0, 1, 1, 1010, 1671,
0, 0, 1,-1, 999, 6936,
2, 0, 0,-1, 623, 6524,
2, 0,-1, 1, 199, 4837,
2, 0,-1,-1, 166, 5741,
2, 0, 0, 1, 117, 2607,
0, 0, 2, 1, 61, 9120,
2, 0, 1,-1, 33, 3572,
0, 0, 2,-1, 31, 7597,
2,-1, 0,-1, 29, 5766,
2, 0,-2,-1, 15, 5663,
2, 0, 1, 1, 15, 1216,
2, 1, 0,-1, -12, -941,
2,-1,-1, 1, 8, 8681,
2,-1, 0, 1, 7, 9586,
2,-1,-1,-1, 7, 4346,
0, 1,-1,-1, -6,-7314,
4, 0,-1,-1, 6, 5796,
0, 1, 0, 1, -6,-4601,
0, 0, 0, 3, -6,-2965,
0, 1,-1, 1, -5,-6324,
1, 0, 0, 1, -5,-3684,
0, 1, 1, 1, -5,-3113,
0, 1, 1,-1, -5, -759,
0, 1, 0,-1, -4,-8396,
1, 0, 0,-1, -4,-8057,
0, 0, 3, 1, 3, 9841,
4, 0, 0,-1, 3, 6745,
4, 0,-1, 1, 2, 9985,
0, 0, 1,-3, 2, 7986,
4, 0,-2, 1, 2, 4139,
2, 0, 0,-3, 2, 1863,
2, 0, 2,-1, 2, 1462,
2,-1, 1,-1, 1, 7660,
2, 0,-2, 1, -1,-6244,
0, 0, 3,-1, 1, 5813,
2, 0, 2, 1, 1, 5198,
2, 0,-3,-1, 1, 5156,
2, 1,-1, 1, -1,-3178,
2, 1, 0, 1, -1,-2643,
4, 0, 0, 1, 1, 1919,
2,-1, 1, 1, 1, 1346,
2,-2, 0,-1, 1, 859,
0, 0, 1, 3, -1, -194,
2, 1, 1,-1, 0,-8227,
1, 1, 0,-1, 0, 8042,
1, 1, 0, 1, 0, 8026,
0, 1,-2,-1, 0,-7932,
2, 1,-1,-1, 0,-7910,
1, 0, 1, 1, 0,-6674,
2,-1,-2,-1, 0, 6502,
0, 1, 2, 1, 0,-6388,
4, 0,-2,-1, 0, 6337,
4,-1,-1,-1, 0, 5958,
1, 0, 1,-1, 0,-5889,
4, 0, 1,-1, 0, 4734,
1, 0,-1,-1, 0,-4299,
4,-1, 0,-1, 0, 4149,
2,-2, 0, 1, 0, 3835,
3, 0, 0,-1, 0,-3518,
4,-1,-1, 1, 0, 3388,
2, 0,-1,-3, 0, 3291,
2,-2,-1, 1, 0, 3147,
0, 1, 2,-1, 0,-3129,
3, 0,-1,-1, 0,-3052,
0, 1,-2, 1, 0,-3013,
2, 0, 1,-3, 0,-2912,
2,-2,-1,-1, 0, 2686,
0, 0, 4, 1, 0, 2633,
2, 0,-3, 1, 0, 2541,
2, 0,-1, 3, 0,-2448,
2, 1, 1, 1, 0,-2370,
4,-1,-2, 1, 0, 2138,
4, 0, 1, 1, 0, 2126,
3, 0,-1, 1, 0,-2059,
4, 1,-1,-1, 0,-1719,
};
#endif /* ! MOSH_MOON_200 */
#define NLRT 38
static const short LRT[8*NLRT] = {
/*
Multiply by T
Longitude Radius
D l' l F .1" .00001" .1km .00001km */
0, 1, 0, 0, 16, 7680, -1,-2302,
2,-1,-1, 0, -5,-1642, 3, 8245,
2,-1, 0, 0, -4,-1383, 5, 1395,
0, 1,-1, 0, 3, 7115, 3, 2654,
0, 1, 1, 0, 2, 7560, -2,-6396,
2, 1,-1, 0, 0, 7118, 0,-6068,
2, 1, 0, 0, 0, 6128, 0,-7754,
1, 1, 0, 0, 0,-4516, 0, 4194,
2,-2, 0, 0, 0,-4048, 0, 4970,
0, 2, 0, 0, 0, 3747, 0, -540,
2,-2,-1, 0, 0,-3707, 0, 2490,
2,-1, 1, 0, 0,-3649, 0, 3222,
0, 1,-2, 0, 0, 2438, 0, 1760,
2,-1,-2, 0, 0,-2165, 0,-2530,
0, 1, 2, 0, 0, 1923, 0,-1450,
0, 2,-1, 0, 0, 1292, 0, 1070,
2, 2,-1, 0, 0, 1271, 0,-6070,
4,-1,-1, 0, 0,-1098, 0, 990,
2, 0, 0, 0, 0, 1073, 0,-1360,
2, 0,-1, 0, 0, 839, 0, -630,
2, 1, 1, 0, 0, 734, 0, -660,
4,-1,-2, 0, 0, -688, 0, 480,
2, 1,-2, 0, 0, -630, 0, 0,
0, 2, 1, 0, 0, 587, 0, -590,
2,-1, 0,-2, 0, -540, 0, -170,
4,-1, 0, 0, 0, -468, 0, 390,
2,-2, 1, 0, 0, -378, 0, 330,
2, 1, 0,-2, 0, 364, 0, 0,
1, 1, 1, 0, 0, -317, 0, 240,
2,-1, 2, 0, 0, -295, 0, 210,
1, 1,-1, 0, 0, -270, 0, -210,
2,-3, 0, 0, 0, -256, 0, 310,
2,-3,-1, 0, 0, -187, 0, 110,
0, 1,-3, 0, 0, 169, 0, 110,
4, 1,-1, 0, 0, 158, 0, -150,
4,-2,-1, 0, 0, -155, 0, 140,
0, 0, 1, 0, 0, 155, 0, -250,
2,-2,-2, 0, 0, -148, 0, -170,
};
#define NBT 16
static const short BT[5*NBT] = {
/*
Multiply by T
Latitude
D l' l F .00001" */
2,-1, 0,-1, -7430,
2, 1, 0,-1, 3043,
2,-1,-1, 1, -2229,
2,-1, 0, 1, -1999,
2,-1,-1,-1, -1869,
0, 1,-1,-1, 1696,
0, 1, 0, 1, 1623,
0, 1,-1, 1, 1418,
0, 1, 1, 1, 1339,
0, 1, 1,-1, 1278,
0, 1, 0,-1, 1217,
2,-2, 0,-1, -547,
2,-1, 1,-1, -443,
2, 1,-1, 1, 331,
2, 1, 0, 1, 317,
2, 0, 0,-1, 295,
};
#define NLRT2 25
static const short LRT2[6*NLRT2] = {
/*
Multiply by T^2
Longitude Radius
D l' l F .00001" .00001km */
0, 1, 0, 0, 487, -36,
2,-1,-1, 0, -150, 111,
2,-1, 0, 0, -120, 149,
0, 1,-1, 0, 108, 95,
0, 1, 1, 0, 80, -77,
2, 1,-1, 0, 21, -18,
2, 1, 0, 0, 20, -23,
1, 1, 0, 0, -13, 12,
2,-2, 0, 0, -12, 14,
2,-1, 1, 0, -11, 9,
2,-2,-1, 0, -11, 7,
0, 2, 0, 0, 11, 0,
2,-1,-2, 0, -6, -7,
0, 1,-2, 0, 7, 5,
0, 1, 2, 0, 6, -4,
2, 2,-1, 0, 5, -3,
0, 2,-1, 0, 5, 3,
4,-1,-1, 0, -3, 3,
2, 0, 0, 0, 3, -4,
4,-1,-2, 0, -2, 0,
2, 1,-2, 0, -2, 0,
2,-1, 0,-2, -2, 0,
2, 1, 1, 0, 2, -2,
2, 0,-1, 0, 2, 0,
0, 2, 1, 0, 2, 0,
};
#define NBT2 12
static const short BT2[5*NBT2] = {
/*
Multiply by T^2
Latitiude
D l' l F .00001" */
2,-1, 0,-1, -22,
2, 1, 0,-1, 9,
2,-1, 0, 1, -6,
2,-1,-1, 1, -6,
2,-1,-1,-1, -5,
0, 1, 0, 1, 5,
0, 1,-1,-1, 5,
0, 1, 1, 1, 4,
0, 1, 1,-1, 4,
0, 1, 0,-1, 4,
0, 1,-1, 1, 4,
2,-2, 0,-1, -2,
};
/* corrections for mean lunar node in degrees, from -13100 to 17200,
* in 100-year steps. corrections are set to 0 between the years 0 and 3000 */
static const double mean_node_corr[] = {
-2.56,
-2.473, -2.392347, -2.316425, -2.239639, -2.167764, -2.095100, -2.024810, -1.957622, -1.890097, -1.826389,
-1.763335, -1.701047, -1.643016, -1.584186, -1.527309, -1.473352, -1.418917, -1.367736, -1.317202, -1.267269,
-1.221121, -1.174218, -1.128862, -1.086214, -1.042998, -1.002491, -0.962635, -0.923176, -0.887191, -0.850403,
-0.814929, -0.782117, -0.748462, -0.717241, -0.686598, -0.656013, -0.628726, -0.600460, -0.573219, -0.548634,
-0.522931, -0.499285, -0.476273, -0.452978, -0.432663, -0.411386, -0.390788, -0.372825, -0.353681, -0.336230,
-0.319520, -0.302343, -0.287794, -0.272262, -0.257166, -0.244534, -0.230635, -0.218126, -0.206365, -0.194000,
-0.183876, -0.172782, -0.161877, -0.153254, -0.143371, -0.134501, -0.126552, -0.117932, -0.111199, -0.103716,
-0.096160, -0.090718, -0.084046, -0.078007, -0.072959, -0.067235, -0.062990, -0.058102, -0.053070, -0.049786,
-0.045381, -0.041317, -0.038165, -0.034501, -0.031871, -0.028844, -0.025701, -0.024018, -0.021427, -0.018881,
-0.017291, -0.015186, -0.013755, -0.012098, -0.010261, -0.009688, -0.008218, -0.006670, -0.005979, -0.004756,
-0.003991, -0.002996, -0.001974, -0.001975, -0.001213, -0.000377, -0.000356, 5.779e-05, 0.000378, 0.000710,
0.001092, 0.000767, 0.000985, 0.001443, 0.001069, 0.001141, 0.001321, 0.001462, 0.001695, 0.001319,
0.001567, 0.001873, 0.001376, 0.001336, 0.001347, 0.001330, 0.001256, 0.000813, 0.000946, 0.001079,
#if 0
0.000509, 0.000375, 0.000477, 0.000321, 0.000279, 5.998e-05, 0.000251, 0.000623, 0.000180, 0.000225,
0.000506, 0.000331, 0.000253, 4.156e-05, 0.000247, 0.000394, -9.294e-05, -2.738e-05, 0.000140, -6.193e-05,
-0.000232, -0.000361, -0.000152, -3.571e-05, -0.000395, -0.000218, 0.000127, -0.000125, -0.000254, -0.000339,
#endif
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
-0.000364, -0.000452, -0.001091, -0.001159, -0.001136, -0.001798, -0.002249, -0.002622, -0.002990, -0.003555,
-0.004425, -0.004758, -0.005134, -0.006065, -0.006839, -0.007474, -0.008283, -0.009411, -0.010786, -0.011810,
-0.012989, -0.014825, -0.016426, -0.017922, -0.019774, -0.021881, -0.024194, -0.026190, -0.028440, -0.031285,
-0.033817, -0.036318, -0.039212, -0.042456, -0.045799, -0.048994, -0.052710, -0.056948, -0.061017, -0.065181,
-0.069843, -0.074922, -0.079976, -0.085052, -0.090755, -0.096840, -0.102797, -0.108939, -0.115568, -0.122636,
-0.129593, -0.136683, -0.144641, -0.152825, -0.161044, -0.169758, -0.178916, -0.188712, -0.198401, -0.208312,
-0.219395, -0.230407, -0.241577, -0.253508, -0.265640, -0.278556, -0.291330, -0.304353, -0.318815, -0.332882,
-0.347316, -0.362895, -0.378421, -0.395061, -0.411748, -0.428666, -0.447477, -0.465636, -0.484277, -0.504600,
-0.524405, -0.545533, -0.567020, -0.588404, -0.612099, -0.634965, -0.658262, -0.683866, -0.708526, -0.734719,
-0.761800, -0.788562, -0.818092, -0.846885, -0.876177, -0.908385, -0.939371, -0.972027, -1.006149, -1.039634,
-1.076135, -1.112156, -1.148490, -1.188312, -1.226761, -1.266821, -1.309156, -1.350583, -1.395223, -1.440028,
-1.485047, -1.534104, -1.582023, -1.631506, -1.684031, -1.735687, -1.790421, -1.846039, -1.901951, -1.961872,
-2.021179, -2.081987, -2.146259, -2.210031, -2.276609, -2.344904, -2.413795, -2.486559, -2.559564, -2.634215,
-2.712692, -2.791289, -2.872533, -2.956217, -3.040965, -3.129234, -3.218545, -3.309805, -3.404827, -3.5008,
-3.601, -3.7, -3.8,
};
/* corrections for mean lunar apsides in degrees, from -13100 to 17200,
* in 100-year steps. corrections are set to 0 between the years 0 and 3000 */
static const double mean_apsis_corr[] = {
7.525,
7.290, 7.057295, 6.830813, 6.611723, 6.396775, 6.189569, 5.985968, 5.788342, 5.597304, 5.410167,
5.229946, 5.053389, 4.882187, 4.716494, 4.553532, 4.396734, 4.243718, 4.094282, 3.950865, 3.810366,
3.674978, 3.543284, 3.414270, 3.290526, 3.168775, 3.050904, 2.937541, 2.826189, 2.719822, 2.616193,
2.515431, 2.419193, 2.323782, 2.232545, 2.143635, 2.056803, 1.974913, 1.893874, 1.816201, 1.741957,
1.668083, 1.598335, 1.529645, 1.463016, 1.399693, 1.336905, 1.278097, 1.220965, 1.165092, 1.113071,
1.060858, 1.011007, 0.963701, 0.916523, 0.872887, 0.829596, 0.788486, 0.750017, 0.711177, 0.675589,
0.640303, 0.605303, 0.573490, 0.541113, 0.511482, 0.483159, 0.455210, 0.430305, 0.404643, 0.380782,
0.358524, 0.335405, 0.315244, 0.295131, 0.275766, 0.259223, 0.241586, 0.225890, 0.210404, 0.194775,
0.181573, 0.167246, 0.154514, 0.143435, 0.131131, 0.121648, 0.111835, 0.102474, 0.094284, 0.085204,
0.078240, 0.070697, 0.063696, 0.058894, 0.052390, 0.047632, 0.043129, 0.037823, 0.034143, 0.029188,
0.025648, 0.021972, 0.018348, 0.017127, 0.013989, 0.011967, 0.011003, 0.007865, 0.007033, 0.005574,
0.004060, 0.003699, 0.002465, 0.002889, 0.002144, 0.001018, 0.001757, -9.67e-05, -0.000734, -0.000392,
-0.001546, -0.000863, -0.001266, -0.000933, -0.000503, -0.001304, 0.000238, -0.000507, -0.000897, 0.000647,
#if 0
-0.000247, 0.000938, 0.001373, 0.001159, 0.001644, 0.000691, 0.001454, 0.000532, -0.000249, 0.000871,
-0.000210, 0.000171, 0.000702, 0.000389, 0.000609, -0.000250, 0.000426, 0.000123, -0.000339, 0.001200,
0.000413, 0.000612, 0.001169, 0.000163, 0.000553, -0.000330, -0.000498, -0.000224, -0.000948, 0.000863,
#endif
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.000514, 0.000683, 0.002228, 0.001974, 0.003485, 0.004280, 0.005409, 0.007468, 0.007938, 0.011012,
0.012525, 0.013757, 0.016757, 0.017932, 0.020780, 0.023416, 0.026386, 0.030428, 0.033512, 0.038789,
0.043126, 0.047778, 0.054175, 0.058891, 0.065878, 0.072345, 0.079668, 0.088238, 0.095307, 0.104873,
0.113533, 0.122336, 0.133205, 0.142922, 0.154871, 0.166488, 0.179234, 0.193928, 0.207262, 0.223089,
0.238736, 0.254907, 0.273232, 0.291085, 0.311046, 0.331025, 0.351955, 0.374422, 0.396341, 0.420772,
0.444867, 0.469984, 0.497448, 0.524717, 0.554752, 0.584581, 0.616272, 0.649744, 0.682947, 0.719405,
0.755834, 0.793780, 0.833875, 0.873893, 0.917340, 0.960429, 1.005471, 1.052384, 1.099317, 1.149508,
1.200130, 1.253038, 1.307672, 1.363480, 1.422592, 1.481900, 1.544111, 1.607982, 1.672954, 1.741025,
1.809727, 1.882038, 1.955243, 2.029956, 2.108428, 2.186805, 2.268697, 2.352071, 2.437370, 2.525903,
2.615415, 2.709082, 2.804198, 2.901704, 3.002606, 3.104412, 3.210406, 3.317733, 3.428386, 3.541634,
3.656634, 3.775988, 3.896306, 4.020480, 4.146814, 4.275356, 4.408257, 4.542282, 4.681174, 4.822524,
4.966424, 5.114948, 5.264973, 5.419906, 5.577056, 5.737688, 5.902347, 6.069138, 6.241065, 6.415155,
6.593317, 6.774853, 6.959322, 7.148845, 7.340334, 7.537156, 7.737358, 7.940882, 8.149932, 8.361576,
8.579150, 8.799591, 9.024378, 9.254584, 9.487362, 9.726535, 9.968784, 10.216089, 10.467716, 10.725293,
10.986, 11.25, 11.52,
};
/* The following times are set up by update() and refer
* to the same instant. The distinction between them
* is required by altaz().
*/
static TLS double ss[5][8];
static TLS double cc[5][8];
static TLS double l; /* Moon's ecliptic longitude */
static TLS double B; /* Ecliptic latitude */
static TLS double moonpol[3];
/* Orbit calculation begins.
*/
static TLS double SWELP;
static TLS double M;
static TLS double MP;
static TLS double D;
static TLS double NF;
static TLS double T;
static TLS double T2;
static TLS double T3;
static TLS double T4;
static TLS double f;
static TLS double g;
static TLS double Ve;
static TLS double Ea;
static TLS double Ma;
static TLS double Ju;
static TLS double Sa;
static TLS double cg;
static TLS double sg;
static TLS double l1;
static TLS double l2;
static TLS double l3;
static TLS double l4;
/* Calculate geometric coordinates of Moon
* without light time or nutation correction.
*/
int swi_moshmoon2(double J, double *pol)
{
int i;
T = (J-J2000)/36525.0;
T2 = T*T;
mean_elements();
mean_elements_pl();
moon1();
moon2();
moon3();
moon4();
for( i=0; i<3; i++ )
pol[i] = moonpol[i];
return(0);
}
/* Moshier's moom
* tjd julian day
* xpm array of 6 doubles for moon's position and speed vectors
* serr pointer to error string
*/
int swi_moshmoon(double tjd, AS_BOOL do_save, double *xpmret, char *serr)
{
int i;
double a, b, x1[6], x2[6], t;
double xx[6], *xpm;
struct plan_data *pdp = &swed.pldat[SEI_MOON];
char s[AS_MAXCH];
if (do_save)
xpm = pdp->x;
else
xpm = xx;
/* allow 0.2 day tolerance so that true node interval fits in */
if (tjd < MOSHLUEPH_START - 0.2 || tjd > MOSHLUEPH_END + 0.2) {
if (serr != NULL) {
sprintf(s, "jd %f outside Moshier's Moon range %.2f .. %.2f ",
tjd, MOSHLUEPH_START, MOSHLUEPH_END);
if (strlen(serr) + strlen(s) < AS_MAXCH)
strcat(serr, s);
}
return(ERR);
}
/* if moon has already been computed */
if (tjd == pdp->teval && pdp->iephe == SEFLG_MOSEPH) {
if (xpmret != NULL)
for (i = 0; i <= 5; i++)
xpmret[i] = pdp->x[i];
return(OK);
}
/* else compute moon */
swi_moshmoon2(tjd, xpm);
if (do_save) {
pdp->teval = tjd;
pdp->xflgs = -1;
pdp->iephe = SEFLG_MOSEPH;
}
/* Moshier moon is referred to ecliptic of date. But we need
* equatorial positions for several reasons.
* e.g. computation of earth from emb and moon
* of heliocentric moon
* Besides, this helps to keep the program structure simpler
*/
ecldat_equ2000(tjd, xpm);
/* speed */
/* from 2 other positions. */
/* one would be good enough for computation of osculating node,
* but not for osculating apogee */
t = tjd + MOON_SPEED_INTV;
swi_moshmoon2(t, x1);
ecldat_equ2000(t, x1);
t = tjd - MOON_SPEED_INTV;
swi_moshmoon2(t, x2);
ecldat_equ2000(t, x2);
for (i = 0; i <= 2; i++) {
#if 0
xpm[i+3] = (x1[i] - x2[i]) / MOON_SPEED_INTV / 2;
#else
b = (x1[i] - x2[i]) / 2;
a = (x1[i] + x2[i]) / 2 - xpm[i];
xpm[i+3] = (2 * a + b) / MOON_SPEED_INTV;
#endif
}
if (xpmret != NULL)
for (i = 0; i <= 5; i++)
xpmret[i] = xpm[i];
return(OK);
}
#ifdef MOSH_MOON_200
static void moon1()
{
double a;
sscc( 0, STR*D, 6 );
sscc( 1, STR*M, 4 );
sscc( 2, STR*MP, 4 );
sscc( 3, STR*NF, 4 );
moonpol[0] = 0.0;
moonpol[1] = 0.0;
moonpol[2] = 0.0;
/* terms in T^2, scale 1.0 = 10^-5" */
chewm( LRT2, NLRT2, 4, 2, moonpol );
chewm( BT2, NBT2, 4, 4, moonpol );
f = 18 * Ve - 16 * Ea;
g = STR*(f - MP ); /* 18V - 16E - l */
cg = cos(g);
sg = sin(g);
l = 6.367278 * cg + 12.747036 * sg; /* t^0 */
l1 = 23123.70 * cg - 10570.02 * sg; /* t^1 */
l2 = z[24] * cg + z[25] * sg; /* t^2 */
l3 = z[26] * cg + z[27] * sg; /* t^3 */
l4 = z[28] * cg + z[29] * sg; /* t^4 */
moonpol[2] += 5.01 * cg + 2.72 * sg;
g = STR * (10.*Ve - 3.*Ea - MP);
cg = cos(g);
sg = sin(g);
l += -0.253102 * cg + 0.503359 * sg;
l1 += 1258.46 * cg + 707.29 * sg;
l2 += z[30] * cg + z[31] * sg;
l3 += z[32] * cg + z[33] * sg;
l4 += z[34] * cg + z[35] * sg;
g = STR*(8.*Ve - 13.*Ea);
cg = cos(g);
sg = sin(g);
l += -0.187231 * cg - 0.127481 * sg;
l1 += -319.87 * cg - 18.34 * sg;
l2 += z[36] * cg + z[37] * sg;
l3 += z[38] * cg + z[39] * sg;
l4 += z[40] * cg + z[41] * sg;
a = 4.0*Ea - 8.0*Ma + 3.0*Ju;
g = STR * a;
cg = cos(g);
sg = sin(g);
l += -0.866287 * cg + 0.248192 * sg;
l1 += 41.87 * cg + 1053.97 * sg;
l2 += z[42] * cg + z[43] * sg;
g = STR*(a - MP);
cg = cos(g);
sg = sin(g);
l += -0.165009 * cg + 0.044176 * sg;
l1 += 4.67 * cg + 201.55 * sg;