-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinput_ranking.m
43 lines (29 loc) · 1.03 KB
/
input_ranking.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
function [result] = input_ranking(subset,M,k,nmin)
% This function builds an ensemble of Exra-Trees and then ranks
% the input variables according to their importance
%
% Inputs:
% subset = observations
% M = number of trees
% k = number of random cut-directions
% nmin = minimum number of points per leaf
%
% Output:
% result = ranked score of each attribute
% RTree-C ExtraTrees algorithm parameters
rtensparam = init_extra_trees();
rtensparam.nbterms = M;
rtensparam.rtparam.extratreesk = k;
rtensparam.rtparam.nmin = nmin;
% Build and ensemble of Extra Trees and get the score of each variable (for
% each tree)
X1 = single(subset(:,1:end-1));
Y1 = single(subset(:,end));
ls1 = int32(1:size(subset,1));
evalc('[ensemble contr] = rtenslearn_c(X1,Y1,ls1,[],rtensparam,0)');
% normalization
contr = contr./sum(contr)*100;
% Rank the variable in decreasing order
[X,I] = sort(contr,1,'descend');
result = [X,I];
% This code has been written by Stefano Galelli and Riccardo Taormina