diff --git a/compute_true_fit.py b/compute_true_fit.py new file mode 100644 index 0000000..3dce4f7 --- /dev/null +++ b/compute_true_fit.py @@ -0,0 +1,74 @@ + +''' + +Computes the *true* degree of fit to the training data, that is, without any +augmentation. + +Usage: + +python compute_true_fit.py + +Evaluate after calling gather_output.py. + +Note: since the reference rules include no one-sided penalty terms, they have +been omitted here. This will be an issue if the REFERENCE_RULES are changed to +include one-sided penalties. + +''' + +from __future__ import division + +import os + +from itertools import izip + +import numpy as np +import matplotlib.pyplot as plt + +import constants +import problems +import fitting + +REFERENCE_RULES = problems.DEFINITIONS['all_scaled'] + +def get_absolute_fit_residuals(pars): + (fm, fv, fe) = fitting.build_fitting_tensors(*REFERENCE_RULES) + + residuals = fm.dot(pars) - fv[:, None] + + return residuals + +def get_relative_fit_residuals(pars): + all_residuals = [] + + for (fm, fv, fe) in fitting.build_relative_fitting_tensor_sets(*REFERENCE_RULES): + raw_residuals = fm.dot(pars) - fv[:, None] + + medians = np.median(raw_residuals, 0) + + residuals = raw_residuals - medians[None, :] + + all_residuals.append(residuals) + + return np.row_stack(all_residuals) + +def load_pars(directory): + pars = np.load(os.path.join(directory, 'pars.npy')) + + return pars + +def compute_fitness(pars): + return ( + np.abs(get_absolute_fit_residuals(pars)).sum(0) + + np.abs(get_relative_fit_residuals(pars)).sum(0) + ) + +if __name__ == '__main__': + import sys + + source = sys.argv[1] + + np.save( + os.path.join(source, 'fit.npy'), + compute_fitness(load_pars(source)) + )