diff --git a/structure.py b/structure.py index 892b01d..5b0d86e 100644 --- a/structure.py +++ b/structure.py @@ -1,4 +1,20 @@ +''' +Defines the various lists, vectors, and matrices needed to connect parameter +value data to the kinetic models. + +Note on data types: While nearly all coefficients in these matrices are +integer-valued, we represent them as floating-point matrices to minimize the +amount of implicit casting when we later use these matrices in concert with +floating-point vectors. + +TODO: move some of these derived/grouped matrices into another downstream file +TODO: reduce the number of public attributes and maybe write in CAPS to indicate constancy +TODO: more descriptions of what the matrices are and how to use them + +''' + + from __future__ import division import numpy as np @@ -6,7 +22,7 @@ from data import kb DYNAMIC_COMPOUNDS = ('F6P', 'F16P', 'DHAP', 'GAP', '13DPG', '3PG', '2PG', 'PEP') -ACTIVE_REACTIONS = ('PGI', 'PFK', 'FBP', 'FBA', 'TPI', 'GAP', 'PGK', 'GPM', 'ENO', 'PYK', 'PPS') +ACTIVE_REACTIONS = ('PGI', 'PFK', 'FBP', 'FBA', 'TPI', 'GAP', 'PGK', 'GPM', 'ENO', 'PYK', 'PPS') # TODO: lowercase for reaction names N_DYNAMIC = len(DYNAMIC_COMPOUNDS) GS = 'Gibbs standard molar energy for compound:{}' @@ -130,35 +146,36 @@ def all_subsets(iterable, include_empty = False): i_gte = parameters.index(GTE.format(reaction.id)) i_gelc = parameters.index(GELC.format(reaction.id)) - frp[i_gte] = +1 - frp[i_gelc] = -1 + frp[i_gte] = +1.0 + frp[i_gelc] = -1.0 - rrp[i_gte] = +1 - rrp[i_gelc] = -1 + rrp[i_gte] = +1.0 + rrp[i_gelc] = -1.0 solo_fbp = [] for reactant in reactants: s = reactant.stoichiometry + sf = float(s) i_gs = parameters.index(GS.format(reactant.compound)) i_glc = parameters.index(GLC.format(reactant.compound)) - frp[i_gs] += -s - frp[i_glc] += -s + frp[i_gs] += -sf + frp[i_glc] += -sf - fed[i_gs] += -s - fed[i_glc] += -s + fed[i_gs] += -sf + fed[i_glc] += -sf if reactant.compound in DYNAMIC_COMPOUNDS: - rs[DYNAMIC_COMPOUNDS.index(reactant.compound)] -= s + rs[DYNAMIC_COMPOUNDS.index(reactant.compound)] -= sf for i in xrange(s): fbp = np.zeros(n_parameters) i_gber = parameters.index(GBER.format(reactant.compound, i+1, reactant.reaction)) - fbp[i_glc] += -1 - fbp[i_gber] += +1 + fbp[i_glc] += -1.0 + fbp[i_gber] += +1.0 solo_fbp.append(fbp) @@ -176,26 +193,27 @@ def all_subsets(iterable, include_empty = False): solo_rbp = [] for product in products: s = product.stoichiometry + sf = float(s) i_gs = parameters.index(GS.format(product.compound)) i_glc = parameters.index(GLC.format(product.compound)) - rrp[i_gs] += -s - rrp[i_glc] += -s + rrp[i_gs] += -sf + rrp[i_glc] += -sf - fed[i_gs] += +s - fed[i_glc] += +s + fed[i_gs] += +sf + fed[i_glc] += +sf if product.compound in DYNAMIC_COMPOUNDS: - rs[DYNAMIC_COMPOUNDS.index(product.compound)] += s + rs[DYNAMIC_COMPOUNDS.index(product.compound)] += sf for i in xrange(s): rbp = np.zeros(n_parameters) i_gbep = parameters.index(GBEP.format(product.compound, i+1, product.reaction)) - rbp[i_glc] += -1 - rbp[i_gbep] += +1 + rbp[i_glc] += -1.0 + rbp[i_gbep] += +1.0 solo_rbp.append(rbp) @@ -231,38 +249,38 @@ def all_subsets(iterable, include_empty = False): forward_saturated_reaction_potential_matrix = forward_reaction_potential_matrix - total_forward_binding_potential_matrix reverse_saturated_reaction_potential_matrix = reverse_reaction_potential_matrix - total_reverse_binding_potential_matrix -stoich = np.array(reaction_stoich).T +stoich = np.array(reaction_stoich).T.copy() reaction_forward_binding_association_matrix = np.zeros( (n_reactions, forward_binding_potential_matrix.shape[0]) ) -reaction_forward_binding_association_matrix[zip(*reaction_forward_binding_associations)] = 1 +reaction_forward_binding_association_matrix[zip(*reaction_forward_binding_associations)] = 1.0 reaction_reverse_binding_association_matrix = np.zeros( (n_reactions, reverse_binding_potential_matrix.shape[0]) ) -reaction_reverse_binding_association_matrix[zip(*reaction_reverse_binding_associations)] = 1 +reaction_reverse_binding_association_matrix[zip(*reaction_reverse_binding_associations)] = 1.0 glc_association_matrix = np.zeros((len(DYNAMIC_COMPOUNDS), n_parameters)) for i, compound in enumerate(DYNAMIC_COMPOUNDS): j = parameters.index(GLC.format(compound)) - glc_association_matrix[i, j] = +1 + glc_association_matrix[i, j] = +1.0 full_glc_association_matrix = np.zeros((len(compounds), n_parameters)) for i, compound in enumerate(compounds): j = parameters.index(GLC.format(compound)) - full_glc_association_matrix[i, j] = +1 + full_glc_association_matrix[i, j] = +1.0 gelc_association_matrix = np.zeros((len(reactions), n_parameters)) for i, reaction in enumerate(reactions): j = parameters.index(GELC.format(reaction)) - gelc_association_matrix[i, j] = +1 + gelc_association_matrix[i, j] = +1.0 molar_masses = gather(kb.molar_mass, 'compound') @@ -292,7 +310,7 @@ def all_subsets(iterable, include_empty = False): for i, reaction in enumerate(reactions): gt_ind = parameters.index(GTE.format(reaction)) - kcat_f_matrix[i, gt_ind] = +1 + kcat_f_matrix[i, gt_ind] = +1.0 for reactant in reactants_by_reaction[reaction]: for s in xrange(reactant.stoichiometry): @@ -310,8 +328,8 @@ def all_subsets(iterable, include_empty = False): ) ) - kcat_f_matrix[i, gs_ind] -= 1 - kcat_f_matrix[i, gb_ind] -= 1 + kcat_f_matrix[i, gs_ind] -= 1.0 + kcat_f_matrix[i, gb_ind] -= 1.0 # kcat_r = exp(-kcat_r_matrix.dot(x)/RT) @@ -320,7 +338,7 @@ def all_subsets(iterable, include_empty = False): for i, reaction in enumerate(reactions): gt_ind = parameters.index(GTE.format(reaction)) - kcat_r_matrix[i, gt_ind] = +1 + kcat_r_matrix[i, gt_ind] = +1.0 for product in products_by_reaction[reaction]: for s in xrange(product.stoichiometry): @@ -338,8 +356,8 @@ def all_subsets(iterable, include_empty = False): ) ) - kcat_r_matrix[i, gs_ind] -= 1 - kcat_r_matrix[i, gb_ind] -= 1 + kcat_r_matrix[i, gs_ind] -= 1.0 + kcat_r_matrix[i, gb_ind] -= 1.0 # Keq = exp(-Keq_matrix.dot(x)/RT) @@ -380,7 +398,7 @@ def all_subsets(iterable, include_empty = False): ) ) - KM_f_matrix[i, gb_ind] = -1 + KM_f_matrix[i, gb_ind] = -1.0 KM_f_ids.append( '{}:{}, #{}'.format( @@ -413,7 +431,7 @@ def all_subsets(iterable, include_empty = False): ) ) - KM_r_matrix[i, gb_ind] = -1 + KM_r_matrix[i, gb_ind] = -1.0 KM_r_ids.append( '{}:{}, #{}'.format( @@ -430,7 +448,7 @@ def all_subsets(iterable, include_empty = False): for (i, compound) in enumerate(compounds): j = parameters.index(GS.format(compound)) - gs_association_matrix[i, j] = +1 + gs_association_matrix[i, j] = +1.0 standard_parameter_matrix = np.concatenate([ full_glc_association_matrix,