-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstructure.py
460 lines (325 loc) · 11.5 KB
/
structure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
'''
Defines the various lists, vectors, and matrices needed to connect parameter
value data to the kinetic models.
Note on data types: While nearly all coefficients in these matrices are
integer-valued, we represent them as floating-point matrices to minimize the
amount of implicit casting when we later use these matrices in concert with
floating-point vectors.
TODO: move some of these derived/grouped matrices into another downstream file
TODO: reduce the number of public attributes and maybe write in CAPS to indicate constancy
TODO: more descriptions of what the matrices are and how to use them
'''
from __future__ import division
import numpy as np
from data import kb
DYNAMIC_COMPOUNDS = ('F6P', 'F16P', 'DHAP', 'GAP', '13DPG', '3PG', '2PG', 'PEP')
ACTIVE_REACTIONS = ('PGI', 'PFK', 'FBP', 'FBA', 'TPI', 'GAP', 'PGK', 'GPM', 'ENO', 'PYK', 'PPS') # TODO: lowercase for reaction names
N_DYNAMIC = len(DYNAMIC_COMPOUNDS)
GS = 'Gibbs standard molar energy for compound:{}'
GLC = 'Gibbs molar energy from concentration for compound:{}'
GTE = 'Gibbs molar transition energy for reaction:{}'
GELC = 'Gibbs molar energy from enzyme concentration for reaction:{}'
GBER = 'Gibbs molar binding energy for reactant compound:{}, #{} in reaction:{}'
GBEP = 'Gibbs molar binding energy for product compound:{}, #{} in reaction:{}'
# Filter for active reactions, compounds
_active_compounds = set()
for reactant in kb.reactant:
if reactant.reaction in ACTIVE_REACTIONS:
_active_compounds.add(reactant.compound)
for product in kb.product:
if product.reaction in ACTIVE_REACTIONS:
_active_compounds.add(product.compound)
n_reactions = len(ACTIVE_REACTIONS)
# Gather parameters
parameters = []
compounds = []
for compound in kb.compound:
if compound.id in _active_compounds:
parameters.append(GS.format(compound.id))
parameters.append(GLC.format(compound.id))
compounds.append(compound.id)
for reaction in kb.reaction:
if reaction.id in ACTIVE_REACTIONS:
parameters.append(GTE.format(reaction.id))
parameters.append(GELC.format(reaction.id))
for reactant in kb.reactant:
if reactant.reaction in ACTIVE_REACTIONS:
for i in xrange(reactant.stoichiometry):
parameters.append(GBER.format(reactant.compound, i+1, reactant.reaction))
for product in kb.product:
if product.reaction in ACTIVE_REACTIONS:
for i in xrange(product.stoichiometry):
parameters.append(GBEP.format(product.compound, i+1, product.reaction))
# Build linear expressions
from collections import defaultdict
def gather(dataset, attribute):
gathered = defaultdict(set)
for entry in dataset:
gathered[getattr(entry, attribute)].add(entry)
return gathered
def all_subsets(iterable, include_empty = False):
empty = []
subsets = [empty]
for item in list(iterable):
new_subsets = []
for subset in subsets:
new_subsets.append(
subset + [item]
)
subsets.extend(new_subsets)
if not include_empty:
subsets.remove(empty)
return subsets
reactants_by_reaction = gather(kb.reactant, 'reaction')
products_by_reaction = gather(kb.product, 'reaction')
n_parameters = len(parameters)
forward_reaction_potentials = []
reverse_reaction_potentials = []
forward_binding_potentials = []
reverse_binding_potentials = []
free_energy_differences = []
solo_forward_binding_potentials = []
solo_reverse_binding_potentials = []
total_forward_binding_potentials = []
total_reverse_binding_potentials = []
reaction_stoich = []
reaction_forward_binding_associations = []
reaction_reverse_binding_associations = []
reactions = []
ind_fbp = 0
ind_rbp = 0
for ind_reaction, reaction in enumerate(kb.reaction):
if reaction.id not in ACTIVE_REACTIONS:
continue
reactions.append(reaction.id)
reactants = reactants_by_reaction[reaction.id]
products = products_by_reaction[reaction.id]
frp = np.zeros(n_parameters)
rrp = np.zeros(n_parameters)
fed = np.zeros(n_parameters)
rs = np.zeros(N_DYNAMIC)
i_gte = parameters.index(GTE.format(reaction.id))
i_gelc = parameters.index(GELC.format(reaction.id))
frp[i_gte] = +1.0
frp[i_gelc] = -1.0
rrp[i_gte] = +1.0
rrp[i_gelc] = -1.0
solo_fbp = []
for reactant in reactants:
s = reactant.stoichiometry
sf = float(s)
i_gs = parameters.index(GS.format(reactant.compound))
i_glc = parameters.index(GLC.format(reactant.compound))
frp[i_gs] += -sf
frp[i_glc] += -sf
fed[i_gs] += -sf
fed[i_glc] += -sf
if reactant.compound in DYNAMIC_COMPOUNDS:
rs[DYNAMIC_COMPOUNDS.index(reactant.compound)] -= sf
for i in xrange(s):
fbp = np.zeros(n_parameters)
i_gber = parameters.index(GBER.format(reactant.compound, i+1, reactant.reaction))
fbp[i_glc] += -1.0
fbp[i_gber] += +1.0
solo_fbp.append(fbp)
solo_forward_binding_potentials.extend(solo_fbp)
total_forward_binding_potentials.append(sum(solo_fbp, np.zeros(n_parameters)))
for fbp_subset in all_subsets(solo_fbp):
fbp = np.sum(fbp_subset, 0)
forward_binding_potentials.append(fbp)
reaction_forward_binding_associations.append((ind_reaction, ind_fbp))
ind_fbp += 1
solo_rbp = []
for product in products:
s = product.stoichiometry
sf = float(s)
i_gs = parameters.index(GS.format(product.compound))
i_glc = parameters.index(GLC.format(product.compound))
rrp[i_gs] += -sf
rrp[i_glc] += -sf
fed[i_gs] += +sf
fed[i_glc] += +sf
if product.compound in DYNAMIC_COMPOUNDS:
rs[DYNAMIC_COMPOUNDS.index(product.compound)] += sf
for i in xrange(s):
rbp = np.zeros(n_parameters)
i_gbep = parameters.index(GBEP.format(product.compound, i+1, product.reaction))
rbp[i_glc] += -1.0
rbp[i_gbep] += +1.0
solo_rbp.append(rbp)
solo_reverse_binding_potentials.extend(solo_rbp)
total_reverse_binding_potentials.append(sum(solo_rbp, np.zeros(n_parameters)))
for rbp_subset in all_subsets(solo_rbp):
rbp = np.sum(rbp_subset, 0)
reverse_binding_potentials.append(rbp)
reaction_reverse_binding_associations.append((ind_reaction, ind_rbp))
ind_rbp += 1
forward_reaction_potentials.append(frp)
reverse_reaction_potentials.append(rrp)
free_energy_differences.append(fed)
reaction_stoich.append(rs)
forward_reaction_potential_matrix = np.array(forward_reaction_potentials)
reverse_reaction_potential_matrix = np.array(reverse_reaction_potentials)
forward_binding_potential_matrix = np.array(forward_binding_potentials)
reverse_binding_potential_matrix = np.array(reverse_binding_potentials)
free_energy_difference_matrix = np.array(free_energy_differences)
solo_forward_binding_potential_matrix = np.array(solo_forward_binding_potentials)
solo_reverse_binding_potential_matrix = np.array(solo_reverse_binding_potentials)
total_forward_binding_potential_matrix = np.array(total_forward_binding_potentials)
total_reverse_binding_potential_matrix = np.array(total_reverse_binding_potentials)
forward_saturated_reaction_potential_matrix = forward_reaction_potential_matrix - total_forward_binding_potential_matrix
reverse_saturated_reaction_potential_matrix = reverse_reaction_potential_matrix - total_reverse_binding_potential_matrix
stoich = np.array(reaction_stoich).T.copy()
reaction_forward_binding_association_matrix = np.zeros(
(n_reactions, forward_binding_potential_matrix.shape[0])
)
reaction_forward_binding_association_matrix[zip(*reaction_forward_binding_associations)] = 1.0
reaction_reverse_binding_association_matrix = np.zeros(
(n_reactions, reverse_binding_potential_matrix.shape[0])
)
reaction_reverse_binding_association_matrix[zip(*reaction_reverse_binding_associations)] = 1.0
glc_association_matrix = np.zeros((len(DYNAMIC_COMPOUNDS), n_parameters))
for i, compound in enumerate(DYNAMIC_COMPOUNDS):
j = parameters.index(GLC.format(compound))
glc_association_matrix[i, j] = +1.0
full_glc_association_matrix = np.zeros((len(compounds), n_parameters))
for i, compound in enumerate(compounds):
j = parameters.index(GLC.format(compound))
full_glc_association_matrix[i, j] = +1.0
gelc_association_matrix = np.zeros((len(reactions), n_parameters))
for i, reaction in enumerate(reactions):
j = parameters.index(GELC.format(reaction))
gelc_association_matrix[i, j] = +1.0
molar_masses = gather(kb.molar_mass, 'compound')
dynamic_molar_masses = []
for compound_id in DYNAMIC_COMPOUNDS:
(entry,) = molar_masses[compound_id]
dynamic_molar_masses.append(entry.molar_mass)
dynamic_molar_masses = np.array(dynamic_molar_masses)
activity_matrix = np.concatenate([
forward_saturated_reaction_potential_matrix,
reverse_saturated_reaction_potential_matrix,
solo_forward_binding_potential_matrix,
solo_reverse_binding_potential_matrix,
glc_association_matrix,
])
n_activities = activity_matrix.shape[0]
# kcat_f = exp(-kcat_f_matrix.dot(x)/RT)
kcat_f_matrix = np.zeros((n_reactions, n_parameters))
for i, reaction in enumerate(reactions):
gt_ind = parameters.index(GTE.format(reaction))
kcat_f_matrix[i, gt_ind] = +1.0
for reactant in reactants_by_reaction[reaction]:
for s in xrange(reactant.stoichiometry):
gs_ind = parameters.index(
GS.format(
reactant.compound,
)
)
gb_ind = parameters.index(
GBER.format(
reactant.compound,
s+1,
reactant.reaction
)
)
kcat_f_matrix[i, gs_ind] -= 1.0
kcat_f_matrix[i, gb_ind] -= 1.0
# kcat_r = exp(-kcat_r_matrix.dot(x)/RT)
kcat_r_matrix = np.zeros((n_reactions, n_parameters))
for i, reaction in enumerate(reactions):
gt_ind = parameters.index(GTE.format(reaction))
kcat_r_matrix[i, gt_ind] = +1.0
for product in products_by_reaction[reaction]:
for s in xrange(product.stoichiometry):
gs_ind = parameters.index(
GS.format(
product.compound,
)
)
gb_ind = parameters.index(
GBEP.format(
product.compound,
s+1,
product.reaction
)
)
kcat_r_matrix[i, gs_ind] -= 1.0
kcat_r_matrix[i, gb_ind] -= 1.0
# Keq = exp(-Keq_matrix.dot(x)/RT)
Keq_matrix = np.zeros((n_reactions, n_parameters))
for i, reaction in enumerate(reactions):
for reactant in reactants_by_reaction[reaction]:
j = parameters.index(
GS.format(reactant.compound)
)
Keq_matrix[i, j] -= reactant.stoichiometry
for product in products_by_reaction[reaction]:
j = parameters.index(
GS.format(product.compound)
)
Keq_matrix[i, j] += product.stoichiometry
# KM_f = exp(-KM_f_matrix.dot(x)/RT)
KM_f_matrix = np.zeros((
solo_forward_binding_potential_matrix.shape[0],
n_parameters
))
KM_f_ids = []
i = 0
for reaction in reactions:
for reactant in reactants_by_reaction[reaction]:
for s in xrange(reactant.stoichiometry):
gb_ind = parameters.index(
GBER.format(
reactant.compound,
s+1,
reactant.reaction
)
)
KM_f_matrix[i, gb_ind] = -1.0
KM_f_ids.append(
'{}:{}, #{}'.format(
reactant.reaction,
reactant.compound,
(s+1),
)
)
i += 1
# KM_r = exp(-KM_r_matrix.dot(x)/RT)
KM_r_matrix = np.zeros((
solo_reverse_binding_potential_matrix.shape[0],
n_parameters
))
KM_r_ids = []
i = 0
for reaction in reactions:
for product in products_by_reaction[reaction]:
for s in xrange(product.stoichiometry):
gb_ind = parameters.index(
GBEP.format(
product.compound,
s+1,
product.reaction
)
)
KM_r_matrix[i, gb_ind] = -1.0
KM_r_ids.append(
'{}:{}, #{}'.format(
product.reaction,
product.compound,
(s+1),
)
)
i += 1
gs_association_matrix = np.zeros((len(compounds), n_parameters))
for (i, compound) in enumerate(compounds):
j = parameters.index(GS.format(compound))
gs_association_matrix[i, j] = +1.0
standard_parameter_matrix = np.concatenate([
full_glc_association_matrix,
gelc_association_matrix,
kcat_f_matrix,
KM_f_matrix,
KM_r_matrix,
gs_association_matrix,
])