-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgradio_demo.py
424 lines (352 loc) Β· 18.8 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import torch
import os
import shutil
import tempfile
import argparse
import gradio as gr
import sys
import io
from PIL import Image
import numpy as np
from source.utils_aux import set_seed
from source.utils_preprocess import read_video_frames, preprocess_frames, select_optimal_frames, save_frames_to_scene_dir, run_colmap_on_scene
from source.trainer import EDGSTrainer
from hydra import initialize, compose
import hydra
import time
from source.visualization import generate_circular_camera_path, save_numpy_frames_as_mp4, generate_fully_smooth_cameras_with_tsp, put_text_on_image
import contextlib
import base64
# Init RoMA model:
sys.path.append('../submodules/RoMa')
from romatch import roma_outdoor, roma_indoor
roma_model = roma_indoor(device="cuda:0")
roma_model.upsample_preds = False
roma_model.symmetric = False
STATIC_FILE_SERVING_FOLDER = "./served_files"
MODEL_PATH = None
os.makedirs(STATIC_FILE_SERVING_FOLDER, exist_ok=True)
trainer = None
class Tee(io.TextIOBase):
def __init__(self, *streams):
self.streams = streams
def write(self, data):
for stream in self.streams:
stream.write(data)
return len(data)
def flush(self):
for stream in self.streams:
stream.flush()
def capture_logs(func, *args, **kwargs):
log_capture_string = io.StringIO()
tee = Tee(sys.__stdout__, log_capture_string)
with contextlib.redirect_stdout(tee):
result = func(*args, **kwargs)
return result, log_capture_string.getvalue()
# Training Pipeline
def run_training_pipeline(scene_dir,
num_ref_views=16,
num_corrs_per_view=20000,
num_steps=1_000,
mode_toggle="Ours (EDGS)"):
with initialize(config_path="./configs", version_base="1.1"):
cfg = compose(config_name="train")
scene_name = os.path.basename(scene_dir)
model_output_dir = f"./outputs/{scene_name}_trained"
cfg.wandb.mode = "disabled"
cfg.gs.dataset.model_path = model_output_dir
cfg.gs.dataset.source_path = scene_dir
cfg.gs.dataset.images = "images"
cfg.gs.opt.TEST_CAM_IDX_TO_LOG = 12
cfg.train.gs_epochs = 30000
if mode_toggle=="Ours (EDGS)":
cfg.gs.opt.opacity_reset_interval = 1_000_000
cfg.train.reduce_opacity = True
cfg.train.no_densify = True
cfg.train.max_lr = True
cfg.init_wC.use = True
cfg.init_wC.matches_per_ref = num_corrs_per_view
cfg.init_wC.nns_per_ref = 1
cfg.init_wC.num_refs = num_ref_views
cfg.init_wC.add_SfM_init = False
cfg.init_wC.scaling_factor = 0.00077 * 2.
set_seed(cfg.seed)
os.makedirs(cfg.gs.dataset.model_path, exist_ok=True)
global trainer
global MODEL_PATH
generator3dgs = hydra.utils.instantiate(cfg.gs, do_train_test_split=False)
trainer = EDGSTrainer(GS=generator3dgs, training_config=cfg.gs.opt, device=cfg.device, log_wandb=cfg.wandb.mode != 'disabled')
# Disable evaluation and saving
trainer.saving_iterations = []
trainer.evaluate_iterations = []
# Initialize
trainer.timer.start()
start_time = time.time()
trainer.init_with_corr(cfg.init_wC, roma_model=roma_model)
time_for_init = time.time()-start_time
viewpoint_cams = trainer.GS.scene.getTrainCameras()
path_cameras = generate_fully_smooth_cameras_with_tsp(existing_cameras=viewpoint_cams,
n_selected=6, # 8
n_points_per_segment=30, # 30
closed=False)
path_cameras = path_cameras + path_cameras[::-1]
path_renderings = []
idx = 0
# Visualize after init
for _ in range(120):
with torch.no_grad():
viewpoint_cam = path_cameras[idx]
idx = (idx + 1) % len(path_cameras)
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(put_text_on_image(img=image_np,
text=f"Init stage.\nTime:{time_for_init:.3f}s. "))
path_renderings = path_renderings + [put_text_on_image(img=image_np, text=f"Start fitting.\nTime:{time_for_init:.3f}s. ")]*30
# Train and save visualizations during training.
start_time = time.time()
for _ in range(int(num_steps//10)):
with torch.no_grad():
viewpoint_cam = path_cameras[idx]
idx = (idx + 1) % len(path_cameras)
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(put_text_on_image(
img=image_np,
text=f"Fitting stage.\nTime:{time_for_init + time.time()-start_time:.3f}s. "))
cfg.train.gs_epochs = 10
trainer.train(cfg.train)
print(f"Time elapsed: {(time_for_init + time.time()-start_time):.2f}s.")
# if (cfg.init_wC.use == False) and (time_for_init + time.time()-start_time) > 60:
# break
final_time = time.time()
# Add static frame. To highlight we're done
path_renderings += [put_text_on_image(
img=image_np, text=f"Done.\nTime:{time_for_init + final_time -start_time:.3f}s. ")]*30
# Final rendering at the end.
for _ in range(len(path_cameras)):
with torch.no_grad():
viewpoint_cam = path_cameras[idx]
idx = (idx + 1) % len(path_cameras)
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(put_text_on_image(img=image_np,
text=f"Final result.\nTime:{time_for_init + final_time -start_time:.3f}s. "))
trainer.save_model()
final_video_path = os.path.join(STATIC_FILE_SERVING_FOLDER, f"{scene_name}_final.mp4")
save_numpy_frames_as_mp4(frames=path_renderings, output_path=final_video_path, fps=30, center_crop=0.85)
MODEL_PATH = cfg.gs.dataset.model_path
ply_path = os.path.join(cfg.gs.dataset.model_path, f"point_cloud/iteration_{trainer.gs_step}/point_cloud.ply")
shutil.copy(ply_path, os.path.join(STATIC_FILE_SERVING_FOLDER, "point_cloud_final.ply"))
return final_video_path, ply_path
# Gradio Interface
def gradio_interface(input_path, num_ref_views, num_corrs, num_steps):
images, scene_dir = run_full_pipeline(input_path, num_ref_views, num_corrs, max_size=1024)
shutil.copytree(scene_dir, STATIC_FILE_SERVING_FOLDER+'/scene_colmaped', dirs_exist_ok=True)
(final_video_path, ply_path), log_output = capture_logs(run_training_pipeline,
scene_dir,
num_ref_views,
num_corrs,
num_steps)
images_rgb = [img[:, :, ::-1] for img in images]
return images_rgb, final_video_path, scene_dir, ply_path, log_output
# Dummy Render Functions
def render_all_views(scene_dir):
viewpoint_cams = trainer.GS.scene.getTrainCameras()
path_cameras = generate_fully_smooth_cameras_with_tsp(existing_cameras=viewpoint_cams,
n_selected=8,
n_points_per_segment=60,
closed=False)
path_cameras = path_cameras + path_cameras[::-1]
path_renderings = []
with torch.no_grad():
for viewpoint_cam in path_cameras:
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(image_np)
save_numpy_frames_as_mp4(frames=path_renderings,
output_path=os.path.join(STATIC_FILE_SERVING_FOLDER, "render_all_views.mp4"),
fps=30,
center_crop=0.85)
return os.path.join(STATIC_FILE_SERVING_FOLDER, "render_all_views.mp4")
def render_circular_path(scene_dir):
viewpoint_cams = trainer.GS.scene.getTrainCameras()
path_cameras = generate_circular_camera_path(existing_cameras=viewpoint_cams,
N=240,
radius_scale=0.65,
d=0)
path_renderings = []
with torch.no_grad():
for viewpoint_cam in path_cameras:
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(image_np)
save_numpy_frames_as_mp4(frames=path_renderings,
output_path=os.path.join(STATIC_FILE_SERVING_FOLDER, "render_circular_path.mp4"),
fps=30,
center_crop=0.85)
return os.path.join(STATIC_FILE_SERVING_FOLDER, "render_circular_path.mp4")
# Download Functions
def download_cameras():
path = os.path.join(MODEL_PATH, "cameras.json")
return f"[π₯ Download Cameras.json](file={path})"
def download_model():
path = os.path.join(STATIC_FILE_SERVING_FOLDER, "point_cloud_final.ply")
return f"[π₯ Download Pretrained Model (.ply)](file={path})"
# Full pipeline helpers
def run_full_pipeline(input_path, num_ref_views, num_corrs, max_size=1024):
tmpdirname = tempfile.mkdtemp()
scene_dir = os.path.join(tmpdirname, "scene")
os.makedirs(scene_dir, exist_ok=True)
selected_frames = process_input(input_path, num_ref_views, scene_dir, max_size)
run_colmap_on_scene(scene_dir)
return selected_frames, scene_dir
# Preprocess Input
def process_input(input_path, num_ref_views, output_dir, max_size=1024):
if isinstance(input_path, (str, os.PathLike)):
if os.path.isdir(input_path):
frames = []
for img_file in sorted(os.listdir(input_path)):
if img_file.lower().endswith(('jpg', 'jpeg', 'png')):
img = Image.open(os.path.join(output_dir, img_file)).convert('RGB')
img.thumbnail((1024, 1024))
frames.append(np.array(img))
else:
frames = read_video_frames(video_input=input_path, max_size=max_size)
else:
frames = read_video_frames(video_input=input_path, max_size=max_size)
frames_scores = preprocess_frames(frames)
selected_frames_indices = select_optimal_frames(scores=frames_scores,
k=min(num_ref_views, len(frames)))
selected_frames = [frames[frame_idx] for frame_idx in selected_frames_indices]
save_frames_to_scene_dir(frames=selected_frames, scene_dir=output_dir)
return selected_frames
def preprocess_input(input_path, num_ref_views, max_size=1024):
tmpdirname = tempfile.mkdtemp()
scene_dir = os.path.join(tmpdirname, "scene")
os.makedirs(scene_dir, exist_ok=True)
selected_frames = process_input(input_path, num_ref_views, scene_dir, max_size)
run_colmap_on_scene(scene_dir)
return selected_frames, scene_dir
def start_training(scene_dir, num_ref_views, num_corrs, num_steps):
return capture_logs(run_training_pipeline, scene_dir, num_ref_views, num_corrs, num_steps)
# Gradio App
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=6):
gr.Markdown("""
## <span style='font-size: 20px;'>π EDGS: Eliminating Densification for Efficient Convergence of 3DGS</span>
π <a href='https://compvis.github.io/EDGS' target='_blank'>Project Page</a>
""", elem_id="header")
gr.Markdown("""
### <span style='font-size: 22px;'>π οΈ How to Use This Demo</span>
1. Upload a **front-facing video** or **a folder of images** of a **static** scene.
2. Use the sliders to configure the number of reference views, correspondences, and optimization steps.
3. First press on preprocess Input to extract frames from video(for videos) and COLMAP frames.
4. Then click **π Start Reconstruction** to actually launch the reconstruction pipeline.
5. Watch the training visualization and explore the 3D model.
βΌοΈ **If you see nothing in the 3D model viewer**, try rotating or zooming β sometimes the initial camera orientation is off.
β
Best for scenes with small camera motion.
β For full 360Β° or large-scale scenes, we recommend the Colab version (see project page).
""", elem_id="quickstart")
scene_dir_state = gr.State()
ply_model_state = gr.State()
with gr.Row():
with gr.Column(scale=2):
input_file = gr.File(label="Upload Video or Images",
file_types=[".mp4", ".avi", ".mov", ".png", ".jpg", ".jpeg"],
file_count="multiple")
gr.Examples(
examples = [
[["assets/examples/video_bakery.mp4"]],
[["assets/examples/video_flowers.mp4"]],
[["assets/examples/video_fruits.mp4"]],
[["assets/examples/video_plant.mp4"]],
[["assets/examples/video_salad.mp4"]],
[["assets/examples/video_tram.mp4"]],
[["assets/examples/video_tulips.mp4"]]
],
inputs=[input_file],
label="ποΈ ALternatively, try an Example Video",
examples_per_page=4
)
ref_slider = gr.Slider(4, 32, value=16, step=1, label="Number of Reference Views")
corr_slider = gr.Slider(5000, 30000, value=20000, step=1000, label="Correspondences per Reference View")
fit_steps_slider = gr.Slider(100, 5000, value=400, step=100, label="Number of optimization steps")
preprocess_button = gr.Button("πΈ Preprocess Input")
start_button = gr.Button("π Start Reconstruction", interactive=False)
gallery = gr.Gallery(label="Selected Reference Views", columns=4, height=300)
with gr.Column(scale=3):
gr.Markdown("### ποΈ Training Visualization")
video_output = gr.Video(label="Training Video", autoplay=True)
render_all_views_button = gr.Button("π₯ Render All-Views Path")
render_circular_path_button = gr.Button("π₯ Render Circular Path")
rendered_video_output = gr.Video(label="Rendered Video", autoplay=True)
with gr.Column(scale=5):
gr.Markdown("### π Final 3D Model")
model3d_viewer = gr.Model3D(label="3D Model Viewer")
gr.Markdown("### π¦ Output Files")
with gr.Row(height=50):
with gr.Column():
#gr.Markdown(value=f"[π₯ Download .ply](file/point_cloud_final.ply)")
download_cameras_button = gr.Button("π₯ Download Cameras.json")
download_cameras_file = gr.File(label="π Cameras.json")
with gr.Column():
download_model_button = gr.Button("π₯ Download Pretrained Model (.ply)")
download_model_file = gr.File(label="π Pretrained Model (.ply)")
log_output_box = gr.Textbox(label="π₯οΈ Log", lines=10, interactive=False)
def on_preprocess_click(input_file, num_ref_views):
images, scene_dir = preprocess_input(input_file, num_ref_views)
return gr.update(value=[x[...,::-1] for x in images]), scene_dir, gr.update(interactive=True)
def on_start_click(scene_dir, num_ref_views, num_corrs, num_steps):
(video_path, ply_path), logs = start_training(scene_dir, num_ref_views, num_corrs, num_steps)
return video_path, ply_path, logs
preprocess_button.click(
fn=on_preprocess_click,
inputs=[input_file, ref_slider],
outputs=[gallery, scene_dir_state, start_button]
)
start_button.click(
fn=on_start_click,
inputs=[scene_dir_state, ref_slider, corr_slider, fit_steps_slider],
outputs=[video_output, model3d_viewer, log_output_box]
)
render_all_views_button.click(fn=render_all_views, inputs=[scene_dir_state], outputs=[rendered_video_output])
render_circular_path_button.click(fn=render_circular_path, inputs=[scene_dir_state], outputs=[rendered_video_output])
download_cameras_button.click(fn=lambda: os.path.join(MODEL_PATH, "cameras.json"), inputs=[], outputs=[download_cameras_file])
download_model_button.click(fn=lambda: os.path.join(STATIC_FILE_SERVING_FOLDER, "point_cloud_final.ply"), inputs=[], outputs=[download_model_file])
gr.Markdown("""
---
### <span style='font-size: 20px;'>π Detailed Overview</span>
If you uploaded a video, it will be automatically cut into a smaller number of frames (default: 16).
The model pipeline:
1. π§ Runs PyCOLMAP to estimate camera intrinsics & poses (~3β7 seconds for <16 images).
2. π Computes 2D-2D correspondences between views. More correspondences generally improve quality.
3. π§ Optimizes a 3D Gaussian Splatting model for several steps.
### π₯ Training Visualization
You will see a visualization of the entire training process in the "Training Video" pane.
### π Rendering & 3D Model
- Render the scene from a circular path of novel views.
- Or from camera views close to the original input.
The 3D model is shown in the right viewer. You can explore it interactively:
- On PC: WASD keys, arrow keys, and mouse clicks
- On mobile: pan and pinch to zoom
π Note: the 3D viewer takes a few extra seconds (~5s) to display after training ends.
---
Preloaded models coming soon. (TODO)
""", elem_id="details")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Launch Gradio demo for EDGS preprocessing and 3D viewing.")
parser.add_argument("--port", type=int, default=7860, help="Port to launch the Gradio app on.")
parser.add_argument("--no_share", action='store_true', help="Disable Gradio sharing and assume local access (default: share=True)")
args = parser.parse_args()
demo.launch(server_name="0.0.0.0", server_port=args.port, share=not args.no_share)