Skip to content

Commit e7ec5ea

Browse files
committed
update week 40
1 parent e75cf6b commit e7ec5ea

File tree

8 files changed

+151
-149
lines changed

8 files changed

+151
-149
lines changed

doc/pub/week40/html/._week40-bs001.html

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -257,10 +257,11 @@ <h2 id="lecture-monday-september-30-2024" class="anchor">Lecture Monday Septembe
257257
<div class="panel-body">
258258
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
259259
<ol>
260-
<li> Stochastic Gradient descent with examples and automatic differentiation</li>
261-
<li> If we get time, we start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model</li>
262-
<li> <a href="https://youtu.be/jdJoOrCIdII" target="_self">Video of lecture</a></li>
263-
<li> Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_self"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a></li>
260+
<li> Logistic regression and gradient descent, examples on how to code</li>
261+
<li> Automatic differentiation and gradient descent, examples using Logistic regression</li>
262+
<li> Start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model
263+
<!-- o <a href="https://youtu.be/jdJoOrCIdII" target="_self">Video of lecture</a> -->
264+
<!-- o Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_self"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a> --></li>
264265
</ol>
265266
</div>
266267
</div>

doc/pub/week40/html/._week40-bs002.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -259,9 +259,9 @@ <h2 id="suggested-readings-and-videos" class="anchor">Suggested readings and vid
259259
<ol>
260260
<li> The lecture notes for week 40 (these notes)</li>
261261
<li> For a good discussion on gradient methods, we would like to recommend Goodfellow et al section 4.3-4.5 and sections 8.3-8.6. We will come back to the latter chapter in our discussion of Neural networks as well.</li>
262-
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)</li>
263-
<li> Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_self"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a></li>
264-
<li> Video on stochastic gradient descent at <a href="https://www.youtube.com/watch?v=vMh0zPT0tLI" target="_self"><tt>https://www.youtube.com/watch?v=vMh0zPT0tLI</tt></a></li>
262+
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)
263+
<!-- o Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_self"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a> --></li>
264+
<li> Video on automatic differentiation at <a href="https://www.youtube.com/watch?v=wG_nF1awSSY" target="_self"><tt>https://www.youtube.com/watch?v=wG_nF1awSSY</tt></a></li>
265265
<li> Neural Networks demystified at <a href="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_self"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
266266
<li> Building Neural Networks from scratch at URL:https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex"</li>
267267
</ol>

doc/pub/week40/html/week40-reveal.html

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -197,10 +197,11 @@ <h2 id="lecture-monday-september-30-2024">Lecture Monday September 30, 2024 </h2
197197
<b></b>
198198
<p>
199199
<ol>
200-
<p><li> Stochastic Gradient descent with examples and automatic differentiation</li>
201-
<p><li> If we get time, we start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model</li>
202-
<p><li> <a href="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a></li>
203-
<p><li> Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a></li>
200+
<p><li> Logistic regression and gradient descent, examples on how to code</li>
201+
<p><li> Automatic differentiation and gradient descent, examples using Logistic regression</li>
202+
<p><li> Start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model
203+
<!-- o <a href="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a> -->
204+
<!-- o Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a> --></li>
204205
</ol>
205206
</div>
206207
</section>
@@ -216,11 +217,10 @@ <h2 id="suggested-readings-and-videos">Suggested readings and videos </h2>
216217

217218
<p><li> For a good discussion on gradient methods, we would like to recommend Goodfellow et al section 4.3-4.5 and sections 8.3-8.6. We will come back to the latter chapter in our discussion of Neural networks as well.</li>
218219

219-
<p><li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)</li>
220+
<p><li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)
221+
<!-- o Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a> --></li>
220222

221-
<p><li> Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a></li>
222-
223-
<p><li> Video on stochastic gradient descent at <a href="https://www.youtube.com/watch?v=vMh0zPT0tLI" target="_blank"><tt>https://www.youtube.com/watch?v=vMh0zPT0tLI</tt></a></li>
223+
<p><li> Video on automatic differentiation at <a href="https://www.youtube.com/watch?v=wG_nF1awSSY" target="_blank"><tt>https://www.youtube.com/watch?v=wG_nF1awSSY</tt></a></li>
224224

225225
<p><li> Neural Networks demystified at <a href="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
226226

doc/pub/week40/html/week40-solarized.html

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -232,10 +232,11 @@ <h2 id="lecture-monday-september-30-2024">Lecture Monday September 30, 2024 </h2
232232
<b></b>
233233
<p>
234234
<ol>
235-
<li> Stochastic Gradient descent with examples and automatic differentiation</li>
236-
<li> If we get time, we start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model</li>
237-
<li> <a href="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a></li>
238-
<li> Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a></li>
235+
<li> Logistic regression and gradient descent, examples on how to code</li>
236+
<li> Automatic differentiation and gradient descent, examples using Logistic regression</li>
237+
<li> Start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model
238+
<!-- o <a href="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a> -->
239+
<!-- o Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a> --></li>
239240
</ol>
240241
</div>
241242

@@ -248,9 +249,9 @@ <h2 id="suggested-readings-and-videos">Suggested readings and videos </h2>
248249
<ol>
249250
<li> The lecture notes for week 40 (these notes)</li>
250251
<li> For a good discussion on gradient methods, we would like to recommend Goodfellow et al section 4.3-4.5 and sections 8.3-8.6. We will come back to the latter chapter in our discussion of Neural networks as well.</li>
251-
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)</li>
252-
<li> Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a></li>
253-
<li> Video on stochastic gradient descent at <a href="https://www.youtube.com/watch?v=vMh0zPT0tLI" target="_blank"><tt>https://www.youtube.com/watch?v=vMh0zPT0tLI</tt></a></li>
252+
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)
253+
<!-- o Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a> --></li>
254+
<li> Video on automatic differentiation at <a href="https://www.youtube.com/watch?v=wG_nF1awSSY" target="_blank"><tt>https://www.youtube.com/watch?v=wG_nF1awSSY</tt></a></li>
254255
<li> Neural Networks demystified at <a href="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
255256
<li> Building Neural Networks from scratch at URL:https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex"</li>
256257
</ol>

doc/pub/week40/html/week40.html

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -309,10 +309,11 @@ <h2 id="lecture-monday-september-30-2024">Lecture Monday September 30, 2024 </h2
309309
<b></b>
310310
<p>
311311
<ol>
312-
<li> Stochastic Gradient descent with examples and automatic differentiation</li>
313-
<li> If we get time, we start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model</li>
314-
<li> <a href="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a></li>
315-
<li> Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a></li>
312+
<li> Logistic regression and gradient descent, examples on how to code</li>
313+
<li> Automatic differentiation and gradient descent, examples using Logistic regression</li>
314+
<li> Start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model
315+
<!-- o <a href="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a> -->
316+
<!-- o Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a> --></li>
316317
</ol>
317318
</div>
318319

@@ -325,9 +326,9 @@ <h2 id="suggested-readings-and-videos">Suggested readings and videos </h2>
325326
<ol>
326327
<li> The lecture notes for week 40 (these notes)</li>
327328
<li> For a good discussion on gradient methods, we would like to recommend Goodfellow et al section 4.3-4.5 and sections 8.3-8.6. We will come back to the latter chapter in our discussion of Neural networks as well.</li>
328-
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)</li>
329-
<li> Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a></li>
330-
<li> Video on stochastic gradient descent at <a href="https://www.youtube.com/watch?v=vMh0zPT0tLI" target="_blank"><tt>https://www.youtube.com/watch?v=vMh0zPT0tLI</tt></a></li>
329+
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)
330+
<!-- o Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a> --></li>
331+
<li> Video on automatic differentiation at <a href="https://www.youtube.com/watch?v=wG_nF1awSSY" target="_blank"><tt>https://www.youtube.com/watch?v=wG_nF1awSSY</tt></a></li>
331332
<li> Neural Networks demystified at <a href="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
332333
<li> Building Neural Networks from scratch at URL:https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex"</li>
333334
</ol>
0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)