You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
259
259
<ol>
260
-
<li> Stochastic Gradient descent with examples and automatic differentiation</li>
261
-
<li> If we get time, we start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model</li>
262
-
<li><ahref="https://youtu.be/jdJoOrCIdII" target="_self">Video of lecture</a></li>
263
-
<li> Whiteboard notes at <ahref="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_self"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a></li>
260
+
<li> Logistic regression and gradient descent, examples on how to code</li>
261
+
<li> Automatic differentiation and gradient descent, examples using Logistic regression</li>
262
+
<li> Start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model
263
+
<!-- o <a href="https://youtu.be/jdJoOrCIdII" target="_self">Video of lecture</a> -->
264
+
<!-- o Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_self"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a> --></li>
Copy file name to clipboardExpand all lines: doc/pub/week40/html/._week40-bs002.html
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -259,9 +259,9 @@ <h2 id="suggested-readings-and-videos" class="anchor">Suggested readings and vid
259
259
<ol>
260
260
<li> The lecture notes for week 40 (these notes)</li>
261
261
<li> For a good discussion on gradient methods, we would like to recommend Goodfellow et al section 4.3-4.5 and sections 8.3-8.6. We will come back to the latter chapter in our discussion of Neural networks as well.</li>
262
-
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)</li>
263
-
<li>Video on gradient descent at <ahref="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_self"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a></li>
264
-
<li> Video on stochastic gradient descent at <ahref="https://www.youtube.com/watch?v=vMh0zPT0tLI" target="_self"><tt>https://www.youtube.com/watch?v=vMh0zPT0tLI</tt></a></li>
262
+
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)
263
+
<!-- o Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_self"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a> --></li>
264
+
<li> Video on automatic differentiation at <ahref="https://www.youtube.com/watch?v=wG_nF1awSSY" target="_self"><tt>https://www.youtube.com/watch?v=wG_nF1awSSY</tt></a></li>
265
265
<li> Neural Networks demystified at <ahref="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_self"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
266
266
<li> Building Neural Networks from scratch at URL:https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex"</li>
<p><li> Stochastic Gradient descent with examples and automatic differentiation</li>
201
-
<p><li> If we get time, we start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model</li>
202
-
<p><li><ahref="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a></li>
203
-
<p><li> Whiteboard notes at <ahref="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a></li>
200
+
<p><li> Logistic regression and gradient descent, examples on how to code</li>
201
+
<p><li> Automatic differentiation and gradient descent, examples using Logistic regression</li>
202
+
<p><li> Start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model
203
+
<!-- o <a href="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a> -->
204
+
<!-- o Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a> --></li>
204
205
</ol>
205
206
</div>
206
207
</section>
@@ -216,11 +217,10 @@ <h2 id="suggested-readings-and-videos">Suggested readings and videos </h2>
216
217
217
218
<p><li> For a good discussion on gradient methods, we would like to recommend Goodfellow et al section 4.3-4.5 and sections 8.3-8.6. We will come back to the latter chapter in our discussion of Neural networks as well.</li>
218
219
219
-
<p><li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)</li>
220
+
<p><li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)
221
+
<!-- o Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a> --></li>
220
222
221
-
<p><li> Video on gradient descent at <ahref="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a></li>
222
-
223
-
<p><li> Video on stochastic gradient descent at <ahref="https://www.youtube.com/watch?v=vMh0zPT0tLI" target="_blank"><tt>https://www.youtube.com/watch?v=vMh0zPT0tLI</tt></a></li>
223
+
<p><li> Video on automatic differentiation at <ahref="https://www.youtube.com/watch?v=wG_nF1awSSY" target="_blank"><tt>https://www.youtube.com/watch?v=wG_nF1awSSY</tt></a></li>
224
224
225
225
<p><li> Neural Networks demystified at <ahref="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
<li> Stochastic Gradient descent with examples and automatic differentiation</li>
236
-
<li> If we get time, we start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model</li>
237
-
<li><ahref="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a></li>
238
-
<li> Whiteboard notes at <ahref="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a></li>
235
+
<li> Logistic regression and gradient descent, examples on how to code</li>
236
+
<li> Automatic differentiation and gradient descent, examples using Logistic regression</li>
237
+
<li> Start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model
238
+
<!-- o <a href="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a> -->
239
+
<!-- o Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a> --></li>
239
240
</ol>
240
241
</div>
241
242
@@ -248,9 +249,9 @@ <h2 id="suggested-readings-and-videos">Suggested readings and videos </h2>
248
249
<ol>
249
250
<li> The lecture notes for week 40 (these notes)</li>
250
251
<li> For a good discussion on gradient methods, we would like to recommend Goodfellow et al section 4.3-4.5 and sections 8.3-8.6. We will come back to the latter chapter in our discussion of Neural networks as well.</li>
251
-
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)</li>
252
-
<li>Video on gradient descent at <ahref="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a></li>
253
-
<li> Video on stochastic gradient descent at <ahref="https://www.youtube.com/watch?v=vMh0zPT0tLI" target="_blank"><tt>https://www.youtube.com/watch?v=vMh0zPT0tLI</tt></a></li>
252
+
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)
253
+
<!-- o Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a> --></li>
254
+
<li> Video on automatic differentiation at <ahref="https://www.youtube.com/watch?v=wG_nF1awSSY" target="_blank"><tt>https://www.youtube.com/watch?v=wG_nF1awSSY</tt></a></li>
254
255
<li> Neural Networks demystified at <ahref="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
255
256
<li> Building Neural Networks from scratch at URL:https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex"</li>
<li> Stochastic Gradient descent with examples and automatic differentiation</li>
313
-
<li> If we get time, we start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model</li>
314
-
<li><ahref="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a></li>
315
-
<li> Whiteboard notes at <ahref="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a></li>
312
+
<li> Logistic regression and gradient descent, examples on how to code</li>
313
+
<li> Automatic differentiation and gradient descent, examples using Logistic regression</li>
314
+
<li> Start with the basics of Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model
315
+
<!-- o <a href="https://youtu.be/jdJoOrCIdII" target="_blank">Video of lecture</a> -->
316
+
<!-- o Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesSeptember30.pdf</tt></a> --></li>
316
317
</ol>
317
318
</div>
318
319
@@ -325,9 +326,9 @@ <h2 id="suggested-readings-and-videos">Suggested readings and videos </h2>
325
326
<ol>
326
327
<li> The lecture notes for week 40 (these notes)</li>
327
328
<li> For a good discussion on gradient methods, we would like to recommend Goodfellow et al section 4.3-4.5 and sections 8.3-8.6. We will come back to the latter chapter in our discussion of Neural networks as well.</li>
328
-
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)</li>
329
-
<li>Video on gradient descent at <ahref="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a></li>
330
-
<li> Video on stochastic gradient descent at <ahref="https://www.youtube.com/watch?v=vMh0zPT0tLI" target="_blank"><tt>https://www.youtube.com/watch?v=vMh0zPT0tLI</tt></a></li>
329
+
<li> For neural networks we recommend Goodfellow et al chapter 6 and Raschka et al chapter 2 (contains also material about gradient descent) and chapter 11 (we will use this next week)
330
+
<!-- o Video on gradient descent at <a href="https://www.youtube.com/watch?v=sDv4f4s2SB8" target="_blank"><tt>https://www.youtube.com/watch?v=sDv4f4s2SB8</tt></a> --></li>
331
+
<li> Video on automatic differentiation at <ahref="https://www.youtube.com/watch?v=wG_nF1awSSY" target="_blank"><tt>https://www.youtube.com/watch?v=wG_nF1awSSY</tt></a></li>
331
332
<li> Neural Networks demystified at <ahref="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
332
333
<li> Building Neural Networks from scratch at URL:https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex"</li>
0 commit comments