|
41 | 41 | ('TensorFlow examples', 2, None, 'tensorflow-examples'), |
42 | 42 | ('What is a recurrent NN?', 2, None, 'what-is-a-recurrent-nn'), |
43 | 43 | ('Why RNNs?', 2, None, 'why-rnns'), |
| 44 | + ('More whys', 2, None, 'more-whys'), |
44 | 45 | ('RNNs in more detail', 2, None, 'rnns-in-more-detail'), |
45 | 46 | ('RNNs in more detail, part 2', |
46 | 47 | 2, |
|
66 | 67 | 2, |
67 | 68 | None, |
68 | 69 | 'rnns-in-more-detail-part-7'), |
| 70 | + ('RNN Forward Pass Equations', |
| 71 | + 2, |
| 72 | + None, |
| 73 | + 'rnn-forward-pass-equations'), |
| 74 | + ('Unrolled RNN in Time', 2, None, 'unrolled-rnn-in-time'), |
| 75 | + ('Example Task: Character-level RNN Classification', |
| 76 | + 2, |
| 77 | + None, |
| 78 | + 'example-task-character-level-rnn-classification'), |
| 79 | + ('PyTorch: Defining a Simple RNN, using Tensorflow', |
| 80 | + 2, |
| 81 | + None, |
| 82 | + 'pytorch-defining-a-simple-rnn-using-tensorflow'), |
| 83 | + ('Similar example using PyTorch', |
| 84 | + 2, |
| 85 | + None, |
| 86 | + 'similar-example-using-pytorch'), |
| 87 | + ('Backpropagation Through Time (BPTT) and Gradients', |
| 88 | + 2, |
| 89 | + None, |
| 90 | + 'backpropagation-through-time-bptt-and-gradients'), |
| 91 | + ('Truncated BPTT and Gradient Clipping', |
| 92 | + 2, |
| 93 | + None, |
| 94 | + 'truncated-bptt-and-gradient-clipping'), |
| 95 | + ('Applications of Simple RNNs', |
| 96 | + 2, |
| 97 | + None, |
| 98 | + 'applications-of-simple-rnns'), |
| 99 | + ('Sequence Modeling Tasks', 2, None, 'sequence-modeling-tasks'), |
| 100 | + ('Other Sequence Applications', |
| 101 | + 2, |
| 102 | + None, |
| 103 | + 'other-sequence-applications'), |
| 104 | + ('Training and Practical Tips', |
| 105 | + 2, |
| 106 | + None, |
| 107 | + 'training-and-practical-tips'), |
| 108 | + ('Limitations and Considerations', |
| 109 | + 2, |
| 110 | + None, |
| 111 | + 'limitations-and-considerations'), |
| 112 | + ('PyTorch RNN Time Series Example', |
| 113 | + 2, |
| 114 | + None, |
| 115 | + 'pytorch-rnn-time-series-example'), |
| 116 | + ('Tensorflow (Keras) RNN Time Series Example', |
| 117 | + 2, |
| 118 | + None, |
| 119 | + 'tensorflow-keras-rnn-time-series-example'), |
69 | 120 | ('The mathematics of RNNs, the basic architecture', |
70 | 121 | 2, |
71 | 122 | None, |
|
156 | 207 | <!-- navigation toc: --> <li><a href="._week47-bs003.html#tensorflow-examples" style="font-size: 80%;">TensorFlow examples</a></li> |
157 | 208 | <!-- navigation toc: --> <li><a href="._week47-bs004.html#what-is-a-recurrent-nn" style="font-size: 80%;">What is a recurrent NN?</a></li> |
158 | 209 | <!-- navigation toc: --> <li><a href="._week47-bs005.html#why-rnns" style="font-size: 80%;">Why RNNs?</a></li> |
159 | | - <!-- navigation toc: --> <li><a href="._week47-bs006.html#rnns-in-more-detail" style="font-size: 80%;">RNNs in more detail</a></li> |
160 | | - <!-- navigation toc: --> <li><a href="._week47-bs007.html#rnns-in-more-detail-part-2" style="font-size: 80%;">RNNs in more detail, part 2</a></li> |
161 | | - <!-- navigation toc: --> <li><a href="._week47-bs008.html#rnns-in-more-detail-part-3" style="font-size: 80%;">RNNs in more detail, part 3</a></li> |
162 | | - <!-- navigation toc: --> <li><a href="._week47-bs009.html#rnns-in-more-detail-part-4" style="font-size: 80%;">RNNs in more detail, part 4</a></li> |
163 | | - <!-- navigation toc: --> <li><a href="._week47-bs010.html#rnns-in-more-detail-part-5" style="font-size: 80%;">RNNs in more detail, part 5</a></li> |
164 | | - <!-- navigation toc: --> <li><a href="._week47-bs011.html#rnns-in-more-detail-part-6" style="font-size: 80%;">RNNs in more detail, part 6</a></li> |
165 | | - <!-- navigation toc: --> <li><a href="._week47-bs012.html#rnns-in-more-detail-part-7" style="font-size: 80%;">RNNs in more detail, part 7</a></li> |
166 | | - <!-- navigation toc: --> <li><a href="._week47-bs013.html#the-mathematics-of-rnns-the-basic-architecture" style="font-size: 80%;">The mathematics of RNNs, the basic architecture</a></li> |
167 | | - <!-- navigation toc: --> <li><a href="._week47-bs014.html#gating-mechanism-long-short-term-memory-lstm" style="font-size: 80%;">Gating mechanism: Long Short Term Memory (LSTM)</a></li> |
168 | | - <!-- navigation toc: --> <li><a href="._week47-bs015.html#implementing-a-memory-cell-in-a-neural-network" style="font-size: 80%;">Implementing a memory cell in a neural network</a></li> |
169 | | - <!-- navigation toc: --> <li><a href="._week47-bs018.html#lstm-details" style="font-size: 80%;">LSTM details</a></li> |
170 | | - <!-- navigation toc: --> <li><a href="._week47-bs017.html#basic-layout-all-figures-from-raschka-et-al" style="font-size: 80%;">Basic layout (All figures from Raschka <em>et al.,</em>)</a></li> |
171 | | - <!-- navigation toc: --> <li><a href="._week47-bs018.html#lstm-details" style="font-size: 80%;">LSTM details</a></li> |
172 | | - <!-- navigation toc: --> <li><a href="._week47-bs019.html#comparing-with-a-standard-rnn" style="font-size: 80%;">Comparing with a standard RNN</a></li> |
173 | | - <!-- navigation toc: --> <li><a href="._week47-bs020.html#lstm-details-i" style="font-size: 80%;">LSTM details I</a></li> |
174 | | - <!-- navigation toc: --> <li><a href="._week47-bs021.html#lstm-details-ii" style="font-size: 80%;">LSTM details II</a></li> |
175 | | - <!-- navigation toc: --> <li><a href="._week47-bs022.html#lstm-details-iii" style="font-size: 80%;">LSTM details III</a></li> |
176 | | - <!-- navigation toc: --> <li><a href="._week47-bs023.html#forget-gate" style="font-size: 80%;">Forget gate</a></li> |
177 | | - <!-- navigation toc: --> <li><a href="._week47-bs024.html#the-forget-gate" style="font-size: 80%;">The forget gate</a></li> |
178 | | - <!-- navigation toc: --> <li><a href="._week47-bs029.html#basic-layout" style="font-size: 80%;">Basic layout</a></li> |
179 | | - <!-- navigation toc: --> <li><a href="._week47-bs026.html#input-gate" style="font-size: 80%;">Input gate</a></li> |
180 | | - <!-- navigation toc: --> <li><a href="._week47-bs027.html#short-summary" style="font-size: 80%;">Short summary</a></li> |
181 | | - <!-- navigation toc: --> <li><a href="._week47-bs028.html#forget-and-input" style="font-size: 80%;">Forget and input</a></li> |
182 | | - <!-- navigation toc: --> <li><a href="._week47-bs029.html#basic-layout" style="font-size: 80%;">Basic layout</a></li> |
183 | | - <!-- navigation toc: --> <li><a href="._week47-bs030.html#output-gate" style="font-size: 80%;">Output gate</a></li> |
184 | | - <!-- navigation toc: --> <li><a href="._week47-bs031.html#summary-of-lstm" style="font-size: 80%;">Summary of LSTM</a></li> |
185 | | - <!-- navigation toc: --> <li><a href="._week47-bs032.html#lstm-implementation-using-tensorflow" style="font-size: 80%;">LSTM implementation using TensorFlow</a></li> |
186 | | - <!-- navigation toc: --> <li><a href="._week47-bs033.html#and-the-corresponding-one-with-pytorch" style="font-size: 80%;">And the corresponding one with PyTorch</a></li> |
187 | | - <!-- navigation toc: --> <li><a href="._week47-bs034.html#dynamical-ordinary-differential-equation" style="font-size: 80%;">Dynamical ordinary differential equation</a></li> |
188 | | - <!-- navigation toc: --> <li><a href="._week47-bs035.html#the-runge-kutta-4-code" style="font-size: 80%;">The Runge-Kutta-4 code</a></li> |
189 | | - <!-- navigation toc: --> <li><a href="._week47-bs036.html#using-the-above-data-to-train-an-rnn" style="font-size: 80%;">Using the above data to train an RNN</a></li> |
| 210 | + <!-- navigation toc: --> <li><a href="._week47-bs006.html#more-whys" style="font-size: 80%;">More whys</a></li> |
| 211 | + <!-- navigation toc: --> <li><a href="._week47-bs007.html#rnns-in-more-detail" style="font-size: 80%;">RNNs in more detail</a></li> |
| 212 | + <!-- navigation toc: --> <li><a href="._week47-bs008.html#rnns-in-more-detail-part-2" style="font-size: 80%;">RNNs in more detail, part 2</a></li> |
| 213 | + <!-- navigation toc: --> <li><a href="._week47-bs009.html#rnns-in-more-detail-part-3" style="font-size: 80%;">RNNs in more detail, part 3</a></li> |
| 214 | + <!-- navigation toc: --> <li><a href="._week47-bs010.html#rnns-in-more-detail-part-4" style="font-size: 80%;">RNNs in more detail, part 4</a></li> |
| 215 | + <!-- navigation toc: --> <li><a href="._week47-bs011.html#rnns-in-more-detail-part-5" style="font-size: 80%;">RNNs in more detail, part 5</a></li> |
| 216 | + <!-- navigation toc: --> <li><a href="._week47-bs012.html#rnns-in-more-detail-part-6" style="font-size: 80%;">RNNs in more detail, part 6</a></li> |
| 217 | + <!-- navigation toc: --> <li><a href="._week47-bs013.html#rnns-in-more-detail-part-7" style="font-size: 80%;">RNNs in more detail, part 7</a></li> |
| 218 | + <!-- navigation toc: --> <li><a href="._week47-bs014.html#rnn-forward-pass-equations" style="font-size: 80%;">RNN Forward Pass Equations</a></li> |
| 219 | + <!-- navigation toc: --> <li><a href="._week47-bs015.html#unrolled-rnn-in-time" style="font-size: 80%;">Unrolled RNN in Time</a></li> |
| 220 | + <!-- navigation toc: --> <li><a href="._week47-bs016.html#example-task-character-level-rnn-classification" style="font-size: 80%;">Example Task: Character-level RNN Classification</a></li> |
| 221 | + <!-- navigation toc: --> <li><a href="._week47-bs017.html#pytorch-defining-a-simple-rnn-using-tensorflow" style="font-size: 80%;">PyTorch: Defining a Simple RNN, using Tensorflow</a></li> |
| 222 | + <!-- navigation toc: --> <li><a href="._week47-bs018.html#similar-example-using-pytorch" style="font-size: 80%;">Similar example using PyTorch</a></li> |
| 223 | + <!-- navigation toc: --> <li><a href="._week47-bs019.html#backpropagation-through-time-bptt-and-gradients" style="font-size: 80%;">Backpropagation Through Time (BPTT) and Gradients</a></li> |
| 224 | + <!-- navigation toc: --> <li><a href="._week47-bs020.html#truncated-bptt-and-gradient-clipping" style="font-size: 80%;">Truncated BPTT and Gradient Clipping</a></li> |
| 225 | + <!-- navigation toc: --> <li><a href="._week47-bs021.html#applications-of-simple-rnns" style="font-size: 80%;">Applications of Simple RNNs</a></li> |
| 226 | + <!-- navigation toc: --> <li><a href="._week47-bs022.html#sequence-modeling-tasks" style="font-size: 80%;">Sequence Modeling Tasks</a></li> |
| 227 | + <!-- navigation toc: --> <li><a href="._week47-bs023.html#other-sequence-applications" style="font-size: 80%;">Other Sequence Applications</a></li> |
| 228 | + <!-- navigation toc: --> <li><a href="._week47-bs024.html#training-and-practical-tips" style="font-size: 80%;">Training and Practical Tips</a></li> |
| 229 | + <!-- navigation toc: --> <li><a href="._week47-bs025.html#limitations-and-considerations" style="font-size: 80%;">Limitations and Considerations</a></li> |
| 230 | + <!-- navigation toc: --> <li><a href="._week47-bs026.html#pytorch-rnn-time-series-example" style="font-size: 80%;">PyTorch RNN Time Series Example</a></li> |
| 231 | + <!-- navigation toc: --> <li><a href="._week47-bs027.html#tensorflow-keras-rnn-time-series-example" style="font-size: 80%;">Tensorflow (Keras) RNN Time Series Example</a></li> |
| 232 | + <!-- navigation toc: --> <li><a href="._week47-bs028.html#the-mathematics-of-rnns-the-basic-architecture" style="font-size: 80%;">The mathematics of RNNs, the basic architecture</a></li> |
| 233 | + <!-- navigation toc: --> <li><a href="._week47-bs029.html#gating-mechanism-long-short-term-memory-lstm" style="font-size: 80%;">Gating mechanism: Long Short Term Memory (LSTM)</a></li> |
| 234 | + <!-- navigation toc: --> <li><a href="._week47-bs030.html#implementing-a-memory-cell-in-a-neural-network" style="font-size: 80%;">Implementing a memory cell in a neural network</a></li> |
| 235 | + <!-- navigation toc: --> <li><a href="._week47-bs033.html#lstm-details" style="font-size: 80%;">LSTM details</a></li> |
| 236 | + <!-- navigation toc: --> <li><a href="._week47-bs032.html#basic-layout-all-figures-from-raschka-et-al" style="font-size: 80%;">Basic layout (All figures from Raschka <em>et al.,</em>)</a></li> |
| 237 | + <!-- navigation toc: --> <li><a href="._week47-bs033.html#lstm-details" style="font-size: 80%;">LSTM details</a></li> |
| 238 | + <!-- navigation toc: --> <li><a href="._week47-bs034.html#comparing-with-a-standard-rnn" style="font-size: 80%;">Comparing with a standard RNN</a></li> |
| 239 | + <!-- navigation toc: --> <li><a href="._week47-bs035.html#lstm-details-i" style="font-size: 80%;">LSTM details I</a></li> |
| 240 | + <!-- navigation toc: --> <li><a href="._week47-bs036.html#lstm-details-ii" style="font-size: 80%;">LSTM details II</a></li> |
| 241 | + <!-- navigation toc: --> <li><a href="._week47-bs037.html#lstm-details-iii" style="font-size: 80%;">LSTM details III</a></li> |
| 242 | + <!-- navigation toc: --> <li><a href="._week47-bs038.html#forget-gate" style="font-size: 80%;">Forget gate</a></li> |
| 243 | + <!-- navigation toc: --> <li><a href="._week47-bs039.html#the-forget-gate" style="font-size: 80%;">The forget gate</a></li> |
| 244 | + <!-- navigation toc: --> <li><a href="._week47-bs044.html#basic-layout" style="font-size: 80%;">Basic layout</a></li> |
| 245 | + <!-- navigation toc: --> <li><a href="._week47-bs041.html#input-gate" style="font-size: 80%;">Input gate</a></li> |
| 246 | + <!-- navigation toc: --> <li><a href="._week47-bs042.html#short-summary" style="font-size: 80%;">Short summary</a></li> |
| 247 | + <!-- navigation toc: --> <li><a href="._week47-bs043.html#forget-and-input" style="font-size: 80%;">Forget and input</a></li> |
| 248 | + <!-- navigation toc: --> <li><a href="._week47-bs044.html#basic-layout" style="font-size: 80%;">Basic layout</a></li> |
| 249 | + <!-- navigation toc: --> <li><a href="._week47-bs045.html#output-gate" style="font-size: 80%;">Output gate</a></li> |
| 250 | + <!-- navigation toc: --> <li><a href="._week47-bs046.html#summary-of-lstm" style="font-size: 80%;">Summary of LSTM</a></li> |
| 251 | + <!-- navigation toc: --> <li><a href="._week47-bs047.html#lstm-implementation-using-tensorflow" style="font-size: 80%;">LSTM implementation using TensorFlow</a></li> |
| 252 | + <!-- navigation toc: --> <li><a href="._week47-bs048.html#and-the-corresponding-one-with-pytorch" style="font-size: 80%;">And the corresponding one with PyTorch</a></li> |
| 253 | + <!-- navigation toc: --> <li><a href="._week47-bs049.html#dynamical-ordinary-differential-equation" style="font-size: 80%;">Dynamical ordinary differential equation</a></li> |
| 254 | + <!-- navigation toc: --> <li><a href="._week47-bs050.html#the-runge-kutta-4-code" style="font-size: 80%;">The Runge-Kutta-4 code</a></li> |
| 255 | + <!-- navigation toc: --> <li><a href="._week47-bs051.html#using-the-above-data-to-train-an-rnn" style="font-size: 80%;">Using the above data to train an RNN</a></li> |
190 | 256 |
|
191 | 257 | </ul> |
192 | 258 | </li> |
@@ -238,7 +304,7 @@ <h4>November 17-21, 2025</h4> |
238 | 304 | <li><a href="._week47-bs008.html">9</a></li> |
239 | 305 | <li><a href="._week47-bs009.html">10</a></li> |
240 | 306 | <li><a href="">...</a></li> |
241 | | - <li><a href="._week47-bs036.html">37</a></li> |
| 307 | + <li><a href="._week47-bs051.html">52</a></li> |
242 | 308 | <li><a href="._week47-bs001.html">»</a></li> |
243 | 309 | </ul> |
244 | 310 | <!-- ------------------- end of main content --------------- --> |
|
0 commit comments