@@ -2415,9 +2415,8 @@ <h2 id="___sec55">Regression Case </h2>
24152415< span style ="color: #008000; font-weight: bold "> import</ span > < span style ="color: #0000FF; font-weight: bold "> scikitplot</ span > < span style ="color: #008000; font-weight: bold "> as</ span > < span style ="color: #0000FF; font-weight: bold "> skplt</ span >
24162416< span style ="color: #008000; font-weight: bold "> from</ span > < span style ="color: #0000FF; font-weight: bold "> sklearn.metrics</ span > < span style ="color: #008000; font-weight: bold "> import</ span > mean_squared_error
24172417
2418- n < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 40</ span >
2419- n_boostraps < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 100</ span >
2420- maxdegree < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 8</ span >
2418+ n < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 100</ span >
2419+ maxdegree < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 6</ span >
24212420
24222421< span style ="color: #408080; font-style: italic "> # Make data set.</ span >
24232422x < span style ="color: #666666 "> =</ span > np< span style ="color: #666666 "> .</ span > linspace(< span style ="color: #666666 "> -3</ span > , < span style ="color: #666666 "> 3</ span > , n)< span style ="color: #666666 "> .</ span > reshape(< span style ="color: #666666 "> -1</ span > , < span style ="color: #666666 "> 1</ span > )
@@ -2434,8 +2433,8 @@ <h2 id="___sec55">Regression Case </h2>
24342433X_test_scaled < span style ="color: #666666 "> =</ span > scaler< span style ="color: #666666 "> .</ span > transform(X_test)
24352434
24362435< span style ="color: #008000; font-weight: bold "> for</ span > degree < span style ="color: #AA22FF; font-weight: bold "> in</ span > < span style ="color: #008000 "> range</ span > (maxdegree):
2437- model < span style ="color: #666666 "> =</ span > xgb< span style ="color: #666666 "> .</ span > XGBRegressor(objective < span style ="color: #666666 "> =</ span > < span style ="color: #BA2121 "> 'reg:linear '</ span > , colsample_bytree < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 0.3</ span > , learning_rate < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 0.1</ span > ,
2438- max_depth < span style ="color: #666666 "> =</ span > maxdegree , alpha < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 10</ span > , n_estimators < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 10</ span > )
2436+ model < span style ="color: #666666 "> =</ span > xgb< span style ="color: #666666 "> .</ span > XGBRegressor(objective < span style ="color: #666666 "> =</ span > < span style ="color: #BA2121 "> 'reg:squarederror '</ span > , colsample_bytree < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 0.3</ span > , learning_rate < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 0.1</ span > ,
2437+ max_depth < span style ="color: #666666 "> =</ span > degree , alpha < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 10</ span > , n_estimators < span style ="color: #666666 "> =</ span > < span style ="color: #666666 "> 10</ span > )
24392438 model< span style ="color: #666666 "> .</ span > fit(X_train_scaled,y_train)
24402439 y_pred < span style ="color: #666666 "> =</ span > model< span style ="color: #666666 "> .</ span > predict(X_test_scaled)
24412440 polydegree[degree] < span style ="color: #666666 "> =</ span > degree
@@ -2448,6 +2447,7 @@ <h2 id="___sec55">Regression Case </h2>
24482447 < span style ="color: #008000; font-weight: bold "> print</ span > (< span style ="color: #BA2121 "> 'Var:'</ span > , variance[degree])
24492448 < span style ="color: #008000; font-weight: bold "> print</ span > (< span style ="color: #BA2121 "> '{} >= {} + {} = {}'</ span > < span style ="color: #666666 "> .</ span > format(error[degree], bias[degree], variance[degree], bias[degree]< span style ="color: #666666 "> +</ span > variance[degree]))
24502449
2450+ plt< span style ="color: #666666 "> .</ span > xlim(< span style ="color: #666666 "> 1</ span > ,maxdegree< span style ="color: #666666 "> -1</ span > )
24512451plt< span style ="color: #666666 "> .</ span > plot(polydegree, error, label< span style ="color: #666666 "> =</ span > < span style ="color: #BA2121 "> 'Error'</ span > )
24522452plt< span style ="color: #666666 "> .</ span > plot(polydegree, bias, label< span style ="color: #666666 "> =</ span > < span style ="color: #BA2121 "> 'bias'</ span > )
24532453plt< span style ="color: #666666 "> .</ span > plot(polydegree, variance, label< span style ="color: #666666 "> =</ span > < span style ="color: #BA2121 "> 'Variance'</ span > )
0 commit comments