Skip to content

Commit 9810756

Browse files
committed
typo
1 parent 548882a commit 9810756

File tree

7 files changed

+66
-12
lines changed

7 files changed

+66
-12
lines changed
279 Bytes
Binary file not shown.
30 Bytes
Binary file not shown.

doc/LectureNotes/_build/html/_sources/project1.ipynb

Lines changed: 21 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@
3939
"links at\n",
4040
"<https://github.com/CompPhysics/MachineLearning/tree/master/doc/Projects>\n",
4141
"contain more information. There you can find examples of previous\n",
42-
"reports, the projects themselves, how we rade reports etc. How to\n",
42+
"reports, the projects themselves, how we grade reports etc. How to\n",
4343
"write reports will also be discussed during the various lab\n",
4444
"sessions. Please do ask us if you are in doubt.\n",
4545
"\n",
@@ -532,7 +532,7 @@
532532
"\n",
533533
"1. For a discussion and derivation of the variances and mean squared errors using linear regression, see the [Lecture notes on ridge regression by Wessel N. van Wieringen](https://arxiv.org/abs/1509.09169)\n",
534534
"\n",
535-
"2. The textbook of [Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning, Springer](https://www.springer.com/gp/book/9780387848570), chapters 3 and 7 are the most relevant ones for the analysis here."
535+
"2. The textbook of [Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning, Springer](https://www.springer.com/gp/book/9780387848570), chapters 3 and 7 are the most relevant ones for the analysis of parts g) and h)."
536536
]
537537
},
538538
{
@@ -635,7 +635,25 @@
635635
]
636636
}
637637
],
638-
"metadata": {},
638+
"metadata": {
639+
"kernelspec": {
640+
"display_name": "Python 3 (ipykernel)",
641+
"language": "python",
642+
"name": "python3"
643+
},
644+
"language_info": {
645+
"codemirror_mode": {
646+
"name": "ipython",
647+
"version": 3
648+
},
649+
"file_extension": ".py",
650+
"mimetype": "text/x-python",
651+
"name": "python",
652+
"nbconvert_exporter": "python",
653+
"pygments_lexer": "ipython3",
654+
"version": "3.9.15"
655+
}
656+
},
639657
"nbformat": 4,
640658
"nbformat_minor": 5
641659
}

doc/LectureNotes/_build/html/project1.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -421,7 +421,7 @@ <h2>Preamble: Note on writing reports, using reference material, AI and other to
421421
links at
422422
<a class="github reference external" href="https://github.com/CompPhysics/MachineLearning/tree/master/doc/Projects">CompPhysics/MachineLearning</a>
423423
contain more information. There you can find examples of previous
424-
reports, the projects themselves, how we rade reports etc. How to
424+
reports, the projects themselves, how we grade reports etc. How to
425425
write reports will also be discussed during the various lab
426426
sessions. Please do ask us if you are in doubt.</p>
427427
<p>When using codes and material from other sources, you should refer to
@@ -651,7 +651,7 @@ <h3>Part h): Cross-validation as resampling techniques, adding more complexity<
651651
<h2>Background literature<a class="headerlink" href="#background-literature" title="Link to this heading">#</a></h2>
652652
<ol class="arabic simple">
653653
<li><p>For a discussion and derivation of the variances and mean squared errors using linear regression, see the <a class="reference external" href="https://arxiv.org/abs/1509.09169">Lecture notes on ridge regression by Wessel N. van Wieringen</a></p></li>
654-
<li><p>The textbook of <a class="reference external" href="https://www.springer.com/gp/book/9780387848570">Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning, Springer</a>, chapters 3 and 7 are the most relevant ones for the analysis here.</p></li>
654+
<li><p>The textbook of <a class="reference external" href="https://www.springer.com/gp/book/9780387848570">Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning, Springer</a>, chapters 3 and 7 are the most relevant ones for the analysis of parts g) and h).</p></li>
655655
</ol>
656656
</section>
657657
<section id="introduction-to-numerical-projects">

doc/LectureNotes/_build/html/searchindex.js

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

doc/LectureNotes/_build/jupyter_execute/project1.ipynb

Lines changed: 21 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@
3939
"links at\n",
4040
"<https://github.com/CompPhysics/MachineLearning/tree/master/doc/Projects>\n",
4141
"contain more information. There you can find examples of previous\n",
42-
"reports, the projects themselves, how we rade reports etc. How to\n",
42+
"reports, the projects themselves, how we grade reports etc. How to\n",
4343
"write reports will also be discussed during the various lab\n",
4444
"sessions. Please do ask us if you are in doubt.\n",
4545
"\n",
@@ -532,7 +532,7 @@
532532
"\n",
533533
"1. For a discussion and derivation of the variances and mean squared errors using linear regression, see the [Lecture notes on ridge regression by Wessel N. van Wieringen](https://arxiv.org/abs/1509.09169)\n",
534534
"\n",
535-
"2. The textbook of [Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning, Springer](https://www.springer.com/gp/book/9780387848570), chapters 3 and 7 are the most relevant ones for the analysis here."
535+
"2. The textbook of [Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning, Springer](https://www.springer.com/gp/book/9780387848570), chapters 3 and 7 are the most relevant ones for the analysis of parts g) and h)."
536536
]
537537
},
538538
{
@@ -635,7 +635,25 @@
635635
]
636636
}
637637
],
638-
"metadata": {},
638+
"metadata": {
639+
"kernelspec": {
640+
"display_name": "Python 3 (ipykernel)",
641+
"language": "python",
642+
"name": "python3"
643+
},
644+
"language_info": {
645+
"codemirror_mode": {
646+
"name": "ipython",
647+
"version": 3
648+
},
649+
"file_extension": ".py",
650+
"mimetype": "text/x-python",
651+
"name": "python",
652+
"nbconvert_exporter": "python",
653+
"pygments_lexer": "ipython3",
654+
"version": "3.9.15"
655+
}
656+
},
639657
"nbformat": 4,
640658
"nbformat_minor": 5
641659
}

doc/LectureNotes/project1.ipynb

Lines changed: 21 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@
3939
"links at\n",
4040
"<https://github.com/CompPhysics/MachineLearning/tree/master/doc/Projects>\n",
4141
"contain more information. There you can find examples of previous\n",
42-
"reports, the projects themselves, how we rade reports etc. How to\n",
42+
"reports, the projects themselves, how we grade reports etc. How to\n",
4343
"write reports will also be discussed during the various lab\n",
4444
"sessions. Please do ask us if you are in doubt.\n",
4545
"\n",
@@ -532,7 +532,7 @@
532532
"\n",
533533
"1. For a discussion and derivation of the variances and mean squared errors using linear regression, see the [Lecture notes on ridge regression by Wessel N. van Wieringen](https://arxiv.org/abs/1509.09169)\n",
534534
"\n",
535-
"2. The textbook of [Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning, Springer](https://www.springer.com/gp/book/9780387848570), chapters 3 and 7 are the most relevant ones for the analysis here."
535+
"2. The textbook of [Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning, Springer](https://www.springer.com/gp/book/9780387848570), chapters 3 and 7 are the most relevant ones for the analysis of parts g) and h)."
536536
]
537537
},
538538
{
@@ -635,7 +635,25 @@
635635
]
636636
}
637637
],
638-
"metadata": {},
638+
"metadata": {
639+
"kernelspec": {
640+
"display_name": "Python 3 (ipykernel)",
641+
"language": "python",
642+
"name": "python3"
643+
},
644+
"language_info": {
645+
"codemirror_mode": {
646+
"name": "ipython",
647+
"version": 3
648+
},
649+
"file_extension": ".py",
650+
"mimetype": "text/x-python",
651+
"name": "python",
652+
"nbconvert_exporter": "python",
653+
"pygments_lexer": "ipython3",
654+
"version": "3.9.15"
655+
}
656+
},
639657
"nbformat": 4,
640658
"nbformat_minor": 5
641659
}

0 commit comments

Comments
 (0)