Skip to content

Commit 97b306b

Browse files
committed
update
1 parent 0e7d972 commit 97b306b

File tree

7 files changed

+426
-927
lines changed

7 files changed

+426
-927
lines changed

doc/pub/week35/html/._week35-bs045.html

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -350,16 +350,17 @@ <h2 id="setting-up-the-matrix-to-be-inverted" class="anchor">Setting up the Matr
350350
<p>which gives us, using the orthogonality of the matrix \( \boldsymbol{V} \),</p>
351351

352352
$$
353-
\tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y}=\sum_{i=0}^{p-1}\boldsymbol{u}_i\boldsymbol{u}^T_i\boldsymbol{y},
353+
\tilde{y}_{\mathrm{OLS}}=\sum_{i=0}^{p-1}\boldsymbol{u}_i\boldsymbol{u}^T_i\boldsymbol{y},
354354
$$
355355

356+
<p>which is not the same as \( \tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y} \), which due to the orthogonality of \( \boldsymbol{U} \) would have given us that the model equals the output.</p>
357+
356358
<p>It means that the ordinary least square model (with the optimal
357359
parameters) \( \boldsymbol{\tilde{y}} \), corresponds to an orthogonal
358360
transformation of the output (or target) vector \( \boldsymbol{y} \) by the
359361
vectors of the matrix \( \boldsymbol{U} \). <b>Note that the summation ends at</b>
360362
\( p-1 \), that is \( \boldsymbol{\tilde{y}}\ne \boldsymbol{y} \). We can thus not use the
361-
orthogonality relation for the matrix \( \boldsymbol{U} \). This can already be
362-
when we multiply the matrices \( \boldsymbol{\Sigma}^T\boldsymbol{U}^T \).
363+
orthogonality relation for the matrix \( \boldsymbol{U} \).
363364
</p>
364365

365366
<p>

doc/pub/week35/html/week35-reveal.html

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2189,17 +2189,18 @@ <h2 id="setting-up-the-matrix-to-be-inverted">Setting up the Matrix to be invert
21892189

21902190
<p>&nbsp;<br>
21912191
$$
2192-
\tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y}=\sum_{i=0}^{p-1}\boldsymbol{u}_i\boldsymbol{u}^T_i\boldsymbol{y},
2192+
\tilde{y}_{\mathrm{OLS}}=\sum_{i=0}^{p-1}\boldsymbol{u}_i\boldsymbol{u}^T_i\boldsymbol{y},
21932193
$$
21942194
<p>&nbsp;<br>
21952195

2196+
<p>which is not the same as \( \tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y} \), which due to the orthogonality of \( \boldsymbol{U} \) would have given us that the model equals the output.</p>
2197+
21962198
<p>It means that the ordinary least square model (with the optimal
21972199
parameters) \( \boldsymbol{\tilde{y}} \), corresponds to an orthogonal
21982200
transformation of the output (or target) vector \( \boldsymbol{y} \) by the
21992201
vectors of the matrix \( \boldsymbol{U} \). <b>Note that the summation ends at</b>
22002202
\( p-1 \), that is \( \boldsymbol{\tilde{y}}\ne \boldsymbol{y} \). We can thus not use the
2201-
orthogonality relation for the matrix \( \boldsymbol{U} \). This can already be
2202-
when we multiply the matrices \( \boldsymbol{\Sigma}^T\boldsymbol{U}^T \).
2203+
orthogonality relation for the matrix \( \boldsymbol{U} \).
22032204
</p>
22042205
</section>
22052206

doc/pub/week35/html/week35-solarized.html

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2062,16 +2062,17 @@ <h2 id="setting-up-the-matrix-to-be-inverted">Setting up the Matrix to be invert
20622062
<p>which gives us, using the orthogonality of the matrix \( \boldsymbol{V} \),</p>
20632063

20642064
$$
2065-
\tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y}=\sum_{i=0}^{p-1}\boldsymbol{u}_i\boldsymbol{u}^T_i\boldsymbol{y},
2065+
\tilde{y}_{\mathrm{OLS}}=\sum_{i=0}^{p-1}\boldsymbol{u}_i\boldsymbol{u}^T_i\boldsymbol{y},
20662066
$$
20672067

2068+
<p>which is not the same as \( \tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y} \), which due to the orthogonality of \( \boldsymbol{U} \) would have given us that the model equals the output.</p>
2069+
20682070
<p>It means that the ordinary least square model (with the optimal
20692071
parameters) \( \boldsymbol{\tilde{y}} \), corresponds to an orthogonal
20702072
transformation of the output (or target) vector \( \boldsymbol{y} \) by the
20712073
vectors of the matrix \( \boldsymbol{U} \). <b>Note that the summation ends at</b>
20722074
\( p-1 \), that is \( \boldsymbol{\tilde{y}}\ne \boldsymbol{y} \). We can thus not use the
2073-
orthogonality relation for the matrix \( \boldsymbol{U} \). This can already be
2074-
when we multiply the matrices \( \boldsymbol{\Sigma}^T\boldsymbol{U}^T \).
2075+
orthogonality relation for the matrix \( \boldsymbol{U} \).
20752076
</p>
20762077

20772078
<!-- !split --><br><br><br><br><br><br><br><br><br><br>

doc/pub/week35/html/week35.html

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2139,16 +2139,17 @@ <h2 id="setting-up-the-matrix-to-be-inverted">Setting up the Matrix to be invert
21392139
<p>which gives us, using the orthogonality of the matrix \( \boldsymbol{V} \),</p>
21402140

21412141
$$
2142-
\tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y}=\sum_{i=0}^{p-1}\boldsymbol{u}_i\boldsymbol{u}^T_i\boldsymbol{y},
2142+
\tilde{y}_{\mathrm{OLS}}=\sum_{i=0}^{p-1}\boldsymbol{u}_i\boldsymbol{u}^T_i\boldsymbol{y},
21432143
$$
21442144

2145+
<p>which is not the same as \( \tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y} \), which due to the orthogonality of \( \boldsymbol{U} \) would have given us that the model equals the output.</p>
2146+
21452147
<p>It means that the ordinary least square model (with the optimal
21462148
parameters) \( \boldsymbol{\tilde{y}} \), corresponds to an orthogonal
21472149
transformation of the output (or target) vector \( \boldsymbol{y} \) by the
21482150
vectors of the matrix \( \boldsymbol{U} \). <b>Note that the summation ends at</b>
21492151
\( p-1 \), that is \( \boldsymbol{\tilde{y}}\ne \boldsymbol{y} \). We can thus not use the
2150-
orthogonality relation for the matrix \( \boldsymbol{U} \). This can already be
2151-
when we multiply the matrices \( \boldsymbol{\Sigma}^T\boldsymbol{U}^T \).
2152+
orthogonality relation for the matrix \( \boldsymbol{U} \).
21522153
</p>
21532154

21542155
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
-1 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)