Skip to content

Commit 8854d3b

Browse files
committed
update with video
1 parent 9ad479c commit 8854d3b

File tree

7 files changed

+442
-1094
lines changed

7 files changed

+442
-1094
lines changed

doc/pub/week35/html/._week35-bs001.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -333,9 +333,9 @@ <h2 id="plans-for-week-35" class="anchor">Plans for week 35 </h2>
333333
<h3 id="reading-recommendations" class="anchor">Reading recommendations: </h3>
334334

335335
<ol>
336-
<li> These lecture notes
337-
<!-- o <a href="https://youtu.be/VKakN-e4aUA" target="_self">Video of lecture</a> -->
338-
<!-- o <a href="https://youtu.be/yiY0OltU1s8" target="_self">Video for exercises week 35</a> --></li>
336+
<li> These lecture notes</li>
337+
<li> Video of lecture at <a href="https://youtu.be/2mvizAQFST8" target="_self"><tt>https://youtu.be/2mvizAQFST8</tt></a></li>
338+
<li> Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek35.pdf" target="_self"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek35.pdf</tt></a></li>
339339
<li> Goodfellow, Bengio and Courville, Deep Learning, chapter 2 on linear algebra</li>
340340
<li> Raschka et al on preprocessing of data, relevant for exercise 3 this week, see chapter 4.</li>
341341
<li> For exercise 1 of week 35, the book by A. Aldo Faisal, Cheng Soon Ong, and Marc Peter Deisenroth on the Mathematics of Machine Learning, may be very relevant. In particular chapter 5 at URL"https://mml-book.github.io/" (section 5.5 on derivatives) is very useful for exercise 1 this coming week.</li>

doc/pub/week35/html/week35-reveal.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -207,9 +207,9 @@ <h2 id="plans-for-week-35">Plans for week 35 </h2>
207207
<h3 id="reading-recommendations">Reading recommendations: </h3>
208208

209209
<ol>
210-
<p><li> These lecture notes
211-
<!-- o <a href="https://youtu.be/VKakN-e4aUA" target="_blank">Video of lecture</a> -->
212-
<!-- o <a href="https://youtu.be/yiY0OltU1s8" target="_blank">Video for exercises week 35</a> --></li>
210+
<p><li> These lecture notes</li>
211+
<p><li> Video of lecture at <a href="https://youtu.be/2mvizAQFST8" target="_blank"><tt>https://youtu.be/2mvizAQFST8</tt></a></li>
212+
<p><li> Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek35.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek35.pdf</tt></a></li>
213213
<p><li> Goodfellow, Bengio and Courville, Deep Learning, chapter 2 on linear algebra</li>
214214
<p><li> Raschka et al on preprocessing of data, relevant for exercise 3 this week, see chapter 4.</li>
215215
<p><li> For exercise 1 of week 35, the book by A. Aldo Faisal, Cheng Soon Ong, and Marc Peter Deisenroth on the Mathematics of Machine Learning, may be very relevant. In particular chapter 5 at URL"https://mml-book.github.io/" (section 5.5 on derivatives) is very useful for exercise 1 this coming week.</li>

doc/pub/week35/html/week35-solarized.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -292,9 +292,9 @@ <h2 id="plans-for-week-35">Plans for week 35 </h2>
292292
<h3 id="reading-recommendations">Reading recommendations: </h3>
293293

294294
<ol>
295-
<li> These lecture notes
296-
<!-- o <a href="https://youtu.be/VKakN-e4aUA" target="_blank">Video of lecture</a> -->
297-
<!-- o <a href="https://youtu.be/yiY0OltU1s8" target="_blank">Video for exercises week 35</a> --></li>
295+
<li> These lecture notes</li>
296+
<li> Video of lecture at <a href="https://youtu.be/2mvizAQFST8" target="_blank"><tt>https://youtu.be/2mvizAQFST8</tt></a></li>
297+
<li> Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek35.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek35.pdf</tt></a></li>
298298
<li> Goodfellow, Bengio and Courville, Deep Learning, chapter 2 on linear algebra</li>
299299
<li> Raschka et al on preprocessing of data, relevant for exercise 3 this week, see chapter 4.</li>
300300
<li> For exercise 1 of week 35, the book by A. Aldo Faisal, Cheng Soon Ong, and Marc Peter Deisenroth on the Mathematics of Machine Learning, may be very relevant. In particular chapter 5 at URL"https://mml-book.github.io/" (section 5.5 on derivatives) is very useful for exercise 1 this coming week.</li>

doc/pub/week35/html/week35.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -369,9 +369,9 @@ <h2 id="plans-for-week-35">Plans for week 35 </h2>
369369
<h3 id="reading-recommendations">Reading recommendations: </h3>
370370

371371
<ol>
372-
<li> These lecture notes
373-
<!-- o <a href="https://youtu.be/VKakN-e4aUA" target="_blank">Video of lecture</a> -->
374-
<!-- o <a href="https://youtu.be/yiY0OltU1s8" target="_blank">Video for exercises week 35</a> --></li>
372+
<li> These lecture notes</li>
373+
<li> Video of lecture at <a href="https://youtu.be/2mvizAQFST8" target="_blank"><tt>https://youtu.be/2mvizAQFST8</tt></a></li>
374+
<li> Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek35.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek35.pdf</tt></a></li>
375375
<li> Goodfellow, Bengio and Courville, Deep Learning, chapter 2 on linear algebra</li>
376376
<li> Raschka et al on preprocessing of data, relevant for exercise 3 this week, see chapter 4.</li>
377377
<li> For exercise 1 of week 35, the book by A. Aldo Faisal, Cheng Soon Ong, and Marc Peter Deisenroth on the Mathematics of Machine Learning, may be very relevant. In particular chapter 5 at URL"https://mml-book.github.io/" (section 5.5 on derivatives) is very useful for exercise 1 this coming week.</li>
0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)