|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "7d56b2d5", |
| 6 | + "metadata": { |
| 7 | + "editable": true |
| 8 | + }, |
| 9 | + "source": [ |
| 10 | + "<!-- HTML file automatically generated from DocOnce source (https://github.com/doconce/doconce/)\n", |
| 11 | + "doconce format html exercisesweek37.do.txt -->\n", |
| 12 | + "<!-- dom:TITLE: Exercises week 36 -->" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "markdown", |
| 17 | + "id": "c7a8e9c7", |
| 18 | + "metadata": { |
| 19 | + "editable": true |
| 20 | + }, |
| 21 | + "source": [ |
| 22 | + "# Exercises week 36\n", |
| 23 | + "**Implementing gradient descent for Ridge and ordinary Least Squares Regression**\n", |
| 24 | + "\n", |
| 25 | + "Date: **September 8-12, 2025**" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "markdown", |
| 30 | + "id": "cf8f0ecb", |
| 31 | + "metadata": { |
| 32 | + "editable": true |
| 33 | + }, |
| 34 | + "source": [ |
| 35 | + "## Learning goals\n", |
| 36 | + "\n", |
| 37 | + "After having completed these exercises you will have:\n", |
| 38 | + "1. Your own code for the implementation of the simplest gradient descent approach applied to ordinary least squares (OLS) and Ridge regression\n", |
| 39 | + "\n", |
| 40 | + "2. Be able to compare the analytical expressions for OLS and Rudge regression with the gradient descent approach\n", |
| 41 | + "\n", |
| 42 | + "3. Explore the role of the learning rate in the gradient descent approach and the hyperparameter $\\lambda$ in Ridge regression\n", |
| 43 | + "\n", |
| 44 | + "4. Scale the data properly" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "markdown", |
| 49 | + "id": "a67ae548", |
| 50 | + "metadata": { |
| 51 | + "editable": true |
| 52 | + }, |
| 53 | + "source": [ |
| 54 | + "## Ridge regression and a new Synthetic Dataset\n", |
| 55 | + "\n", |
| 56 | + "We create a synthetic linear regression dataset with a sparse\n", |
| 57 | + "underlying relationship. This means we have many features but only a\n", |
| 58 | + "few of them actually contribute to the target. In our example, we’ll\n", |
| 59 | + "use 10 features with only 3 non-zero weights in the true model. This\n", |
| 60 | + "way, the target is generated as a linear combination of a few features\n", |
| 61 | + "(with known coefficients) plus some random noise. The steps we include are:\n", |
| 62 | + "\n", |
| 63 | + "Decide on the number of samples and features (e.g. 100 samples, 10 features).\n", |
| 64 | + "Define the **true** coefficient vector with mostly zeros (for sparsity). For example, we set $\\hat{\\boldsymbol{\\theta}} = [5.0, -3.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0]$, meaning only features 0, 1, and 6 have a real effect on y.\n", |
| 65 | + "\n", |
| 66 | + "Then we sample feature values for $\\boldsymbol{X}$ randomly (e.g. from a normal distribution). We use a normal distribution so features are roughly centered around 0.\n", |
| 67 | + "Then we compute the target values $y$ using the linear combination $\\boldsymbol{X}\\hat{\\boldsymbol{\\theta}}$ and add some noise (to simulate measurement error or unexplained variance).\n", |
| 68 | + "\n", |
| 69 | + "Below is the code to generate the dataset:" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": 1, |
| 75 | + "id": "f2d4a55d", |
| 76 | + "metadata": { |
| 77 | + "collapsed": false, |
| 78 | + "editable": true |
| 79 | + }, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "import numpy as np\n", |
| 83 | + "\n", |
| 84 | + "# Set random seed for reproducibility\n", |
| 85 | + "np.random.seed(0)\n", |
| 86 | + "\n", |
| 87 | + "# Define dataset size\n", |
| 88 | + "n_samples = 100\n", |
| 89 | + "n_features = 10\n", |
| 90 | + "\n", |
| 91 | + "# Define true coefficients (sparse linear relationship)\n", |
| 92 | + "theta_true = np.array([5.0, -3.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0])\n", |
| 93 | + "\n", |
| 94 | + "# Generate feature matrix X (n_samples x n_features) with random values\n", |
| 95 | + "X = np.random.randn(n_samples, n_features) # standard normal distribution\n", |
| 96 | + "\n", |
| 97 | + "# Generate target values y with a linear combination of X and theta_true, plus noise\n", |
| 98 | + "noise = 0.5 * np.random.randn(n_samples) # Gaussian noise\n", |
| 99 | + "y = X.dot @ theta_true + noise" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "markdown", |
| 104 | + "id": "a445583b", |
| 105 | + "metadata": { |
| 106 | + "editable": true |
| 107 | + }, |
| 108 | + "source": [ |
| 109 | + "This code produces a dataset where only features 0, 1, and 6\n", |
| 110 | + "significantly influence $\\boldsymbol{y}$. The rest of the features have zero true\n", |
| 111 | + "coefficient, so they only contribute noise. For example, feature 0 has\n", |
| 112 | + "a true weight of 5.0, feature 1 has -3.0, and feature 6 has 2.0, so\n", |
| 113 | + "the expected relationship is:" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "id": "4a81ddf9", |
| 119 | + "metadata": { |
| 120 | + "editable": true |
| 121 | + }, |
| 122 | + "source": [ |
| 123 | + "$$\n", |
| 124 | + "y \\approx 5 \\times X_0 \\;-\\; 3 \\times X_1 \\;+\\; 2 \\times X_6 \\;+\\; \\text{noise}.\n", |
| 125 | + "$$" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "markdown", |
| 130 | + "id": "ae590275", |
| 131 | + "metadata": { |
| 132 | + "editable": true |
| 133 | + }, |
| 134 | + "source": [ |
| 135 | + "## Exercise 1, scale your data\n", |
| 136 | + "\n", |
| 137 | + "Before fitting a regression model, it is good practice to normalize or\n", |
| 138 | + "standardize the features. This ensures all features are on a\n", |
| 139 | + "comparable scale, which is especially important when using\n", |
| 140 | + "regularization. Here we will perform standardization, scaling each\n", |
| 141 | + "feature to have mean 0 and standard deviation 1:\n", |
| 142 | + "\n", |
| 143 | + "Compute the mean and standard deviation of each column (feature) in $bm{X}$.\n", |
| 144 | + "Subtract the mean and divide by the standard deviation for each feature.\n", |
| 145 | + "\n", |
| 146 | + "We will also center the target $\\boldsymbol{y}$ to mean $0$. Centering $\\boldsymbol{y}$\n", |
| 147 | + "(and each feature) means the model won’t require a separate intercept\n", |
| 148 | + "term – the data is shifted such that the intercept is effectively 0\n", |
| 149 | + ". (In practice, one could include an intercept in the model and not\n", |
| 150 | + "penalize it, but here we simplify by centering.)" |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": 2, |
| 156 | + "id": "8b40c47a", |
| 157 | + "metadata": { |
| 158 | + "collapsed": false, |
| 159 | + "editable": true |
| 160 | + }, |
| 161 | + "outputs": [], |
| 162 | + "source": [ |
| 163 | + "# Standardize features (zero mean, unit variance for each feature)\n", |
| 164 | + "X_mean = X.mean(axis=0)\n", |
| 165 | + "X_std = X.std(axis=0)\n", |
| 166 | + "X_std[X_std == 0] = 1 # safeguard to avoid division by zero for constant features\n", |
| 167 | + "X_norm = (X - X_mean) / X_std\n", |
| 168 | + "\n", |
| 169 | + "# Center the target to zero mean (optional, to simplify intercept handling)\n", |
| 170 | + "y_mean = ?\n", |
| 171 | + "y_centered = ?" |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "markdown", |
| 176 | + "id": "ff9c0c81", |
| 177 | + "metadata": { |
| 178 | + "editable": true |
| 179 | + }, |
| 180 | + "source": [ |
| 181 | + "### 1a)\n", |
| 182 | + "\n", |
| 183 | + "Fill in the necessary details.\n", |
| 184 | + "\n", |
| 185 | + "After this preprocessing, each column of $\\boldsymbol{X}_norm$ has mean zero and standard deviation $1$\n", |
| 186 | + "and $\\boldsymbol{y}_centered$ has mean 0. This makes the optimization landscape\n", |
| 187 | + "nicer and ensures the regularization penalty $\\lambda \\sum_j\n", |
| 188 | + "\\beta_j^2$ treats each coefficient fairly (since features are on the\n", |
| 189 | + "same scale)." |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "markdown", |
| 194 | + "id": "d27c70e4", |
| 195 | + "metadata": { |
| 196 | + "editable": true |
| 197 | + }, |
| 198 | + "source": [ |
| 199 | + "## Exercise 2, use the analytical formulae for OLS and Ridge regression to find the optimal paramters $\\boldsymbol{theta}$" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": 3, |
| 205 | + "id": "9f1e5184", |
| 206 | + "metadata": { |
| 207 | + "collapsed": false, |
| 208 | + "editable": true |
| 209 | + }, |
| 210 | + "outputs": [], |
| 211 | + "source": [ |
| 212 | + "# Set regularization parameter, either a single value or a vector of values\n", |
| 213 | + "lambda = ?\n", |
| 214 | + "\n", |
| 215 | + "# Analytical form for OLS and Ridge solution: theta_Ridge = (X^T X + lambda * I)^{-1} X^T y and theta_OLS = (X^T X)^{-1} X^T y\n", |
| 216 | + "I = np.eye(n_features)\n", |
| 217 | + "theta_closed_formRidge = ?\n", |
| 218 | + "theta_closed_formOLS = ?\n", |
| 219 | + "\n", |
| 220 | + "print(\"Closed-form Ridge coefficients:\", theta_closed_form)\n", |
| 221 | + "print(\"Closed-form OLS coefficients:\", theta_closed_form)" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "markdown", |
| 226 | + "id": "2ec556b9", |
| 227 | + "metadata": { |
| 228 | + "editable": true |
| 229 | + }, |
| 230 | + "source": [ |
| 231 | + "This computes the ridge and OLS regression coefficients directly. The identity\n", |
| 232 | + "matrix $I$ has the same size as $X^T X$ (which is n_features x\n", |
| 233 | + "n_features), and lam * I adds $\\lambda$ to the diagonal of $X^T X. We\n", |
| 234 | + "then invert this matrix and multiply by $X^T y. The result\n", |
| 235 | + "for $\\boldsymbol{\\theta}$ is a NumPy array of shape (n_features,) containing the\n", |
| 236 | + "fitted weights." |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "markdown", |
| 241 | + "id": "a821f0c5", |
| 242 | + "metadata": { |
| 243 | + "editable": true |
| 244 | + }, |
| 245 | + "source": [ |
| 246 | + "### 2a)\n", |
| 247 | + "\n", |
| 248 | + "Finalize the OLS and Ridge regression determination of the optimal parameters $bm{\\theta}$." |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "markdown", |
| 253 | + "id": "d637130e", |
| 254 | + "metadata": { |
| 255 | + "editable": true |
| 256 | + }, |
| 257 | + "source": [ |
| 258 | + "### 2b)\n", |
| 259 | + "\n", |
| 260 | + "Explore the results as function of different values of the hyperparameter $\\lambda$. See for example exercise 4 from week 36." |
| 261 | + ] |
| 262 | + }, |
| 263 | + { |
| 264 | + "cell_type": "markdown", |
| 265 | + "id": "b455ce7e", |
| 266 | + "metadata": { |
| 267 | + "editable": true |
| 268 | + }, |
| 269 | + "source": [ |
| 270 | + "## Implementing the simplest form for gradient descent\n", |
| 271 | + "\n", |
| 272 | + "Alternatively, we can fit the ridge regression model using gradient\n", |
| 273 | + "descent. This is useful to visualize the iterative convergence and is\n", |
| 274 | + "necessary if $n$ and $p$ are so large that the closed-form might be\n", |
| 275 | + "too slow or memory-intensive. We derive the gradients from the cost\n", |
| 276 | + "functions defined above. Use the gradients of the Ridge and OLS cost functions with respect to\n", |
| 277 | + "the parameters $\\boldsymbol{\\theta}$ and set up (using the template below) your own gradient descent code for OLS and Ridge regression.\n", |
| 278 | + "\n", |
| 279 | + "Below is a template code for gradient descent implementation of ridge:" |
| 280 | + ] |
| 281 | + }, |
| 282 | + { |
| 283 | + "cell_type": "code", |
| 284 | + "execution_count": 4, |
| 285 | + "id": "cfa1eb29", |
| 286 | + "metadata": { |
| 287 | + "collapsed": false, |
| 288 | + "editable": true |
| 289 | + }, |
| 290 | + "outputs": [], |
| 291 | + "source": [ |
| 292 | + "# Gradient descent parameters, learning rate eta first\n", |
| 293 | + "eta = 0.1\n", |
| 294 | + "# Then number of iterations\n", |
| 295 | + "num_iters = 1000\n", |
| 296 | + "\n", |
| 297 | + "# Initialize weights for gradient descent\n", |
| 298 | + "theta = np.zeros(n_features)\n", |
| 299 | + "\n", |
| 300 | + "# Arrays to store history for plotting\n", |
| 301 | + "cost_history = np.zeros(num_iters)\n", |
| 302 | + "\n", |
| 303 | + "# Gradient descent loop\n", |
| 304 | + "m = n_samples # number of examples\n", |
| 305 | + "for t in range(num_iters):\n", |
| 306 | + " # Compute prediction error\n", |
| 307 | + " error = X_norm.dot(theta) - y_centered \n", |
| 308 | + " # Compute cost for OLS and Ridge (MSE + regularization for Ridge) for monitoring\n", |
| 309 | + " cost_OLS = ?\n", |
| 310 | + " cost_Ridge = ?\n", |
| 311 | + " cost_history[t] = ?\n", |
| 312 | + " # Compute gradients for OSL and Ridge\n", |
| 313 | + " grad_OLS = ?\n", |
| 314 | + " grad_Ridge = ?\n", |
| 315 | + " # Update parameters theta\n", |
| 316 | + " theta_gdOLS = ?\n", |
| 317 | + " theta_gdRidge = ? \n", |
| 318 | + "\n", |
| 319 | + "# After the loop, theta contains the fitted coefficients\n", |
| 320 | + "theta_gdOLS = ?\n", |
| 321 | + "theta_gdRidge = ?\n", |
| 322 | + "print(\"Gradient Descent OLS coefficients:\", theta_gdOLS)\n", |
| 323 | + "print(\"Gradient Descent Ridge coefficients:\", theta_gdRidge)" |
| 324 | + ] |
| 325 | + }, |
| 326 | + { |
| 327 | + "cell_type": "markdown", |
| 328 | + "id": "dc78d58d", |
| 329 | + "metadata": { |
| 330 | + "editable": true |
| 331 | + }, |
| 332 | + "source": [ |
| 333 | + "### 3a)\n", |
| 334 | + "\n", |
| 335 | + "Discuss the results as function of the learning rate paramaters and the number of iterations." |
| 336 | + ] |
| 337 | + }, |
| 338 | + { |
| 339 | + "cell_type": "markdown", |
| 340 | + "id": "15060acb", |
| 341 | + "metadata": { |
| 342 | + "editable": true |
| 343 | + }, |
| 344 | + "source": [ |
| 345 | + "### 3b)\n", |
| 346 | + "\n", |
| 347 | + "Add a stopping parameter as function of the number iterations. \n", |
| 348 | + "\n", |
| 349 | + "If everything worked correctly, the learned coefficients should be\n", |
| 350 | + "close to the true values [5.0, -3.0, 0.0, …, 2.0, …] that we used to\n", |
| 351 | + "generate the data. Keep in mind that due to regularization and noise,\n", |
| 352 | + "the learned values will not exactly equal the true ones, but they\n", |
| 353 | + "should be in the same ballpark." |
| 354 | + ] |
| 355 | + } |
| 356 | + ], |
| 357 | + "metadata": {}, |
| 358 | + "nbformat": 4, |
| 359 | + "nbformat_minor": 5 |
| 360 | +} |
0 commit comments