Skip to content

Commit 707708e

Browse files
committed
updated week 48
1 parent e7a9d99 commit 707708e

17 files changed

+560
-554
lines changed
866 Bytes
Binary file not shown.
446 Bytes
Binary file not shown.
38.8 KB
Loading
11.6 KB
Loading
16.8 KB
Loading
44 KB
Loading
43.7 KB
Loading

doc/LectureNotes/_build/html/_sources/week48.ipynb

Lines changed: 163 additions & 161 deletions
Large diffs are not rendered by default.

doc/LectureNotes/_build/html/searchindex.js

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

doc/LectureNotes/_build/html/week48.html

Lines changed: 39 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -527,7 +527,7 @@ <h2> Contents </h2>
527527
<!-- dom:TITLE: Week 48: Gradient boosting and summary of course --><section class="tex2jax_ignore mathjax_ignore" id="week-48-gradient-boosting-and-summary-of-course">
528528
<h1>Week 48: Gradient boosting and summary of course<a class="headerlink" href="#week-48-gradient-boosting-and-summary-of-course" title="Link to this heading">#</a></h1>
529529
<p><strong>Morten Hjorth-Jensen</strong>, Department of Physics and Center for Computing in Science Education, University of Oslo, Norway</p>
530-
<p>Date: <strong>Nov 24, 2024</strong></p>
530+
<p>Date: <strong>Nov 25, 2024</strong></p>
531531
<p>Copyright 1999-2024, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license</p>
532532
<section id="overview-of-week-48">
533533
<h2>Overview of week 48<a class="headerlink" href="#overview-of-week-48" title="Link to this heading">#</a></h2>
@@ -542,13 +542,13 @@ <h2>Lecture Monday, November 25<a class="headerlink" href="#lecture-monday-novem
542542
</ol>
543543
<p>a. These lecture notes at <a class="github reference external" href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/pub/week48/ipynb/week48.ipynb">CompPhysics/MachineLearning</a></p>
544544
<p>b. See also lecture notes from week 47 at <a class="github reference external" href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/pub/week47/ipynb/week47.ipynb">CompPhysics/MachineLearning</a>. The lecture on Monday starts with a repetition on AdaBoost before we move over to gradient boosting with examples</p>
545-
<!-- o Video of lecture at <https://youtu.be/RIHzmLv05DA> -->
546-
<!-- o Whiteboard notes at <https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesNovember25.pdf> -->
547-
<p>c. Video on Decision trees <a class="reference external" href="https://www.youtube.com/watch?v=RmajweUFKvM&amp;amp;ab_channel=Simplilearn">https://www.youtube.com/watch?v=RmajweUFKvM&amp;ab_channel=Simplilearn</a></p>
548-
<p>d. Video on boosting methods <a class="reference external" href="https://www.youtube.com/watch?v=wPqtzj5VZus&amp;amp;ab_channel=H2O.ai">https://www.youtube.com/watch?v=wPqtzj5VZus&amp;ab_channel=H2O.ai</a></p>
549-
<p>e. Video on AdaBoost <a class="reference external" href="https://www.youtube.com/watch?v=LsK-xG1cLYA">https://www.youtube.com/watch?v=LsK-xG1cLYA</a></p>
550-
<p>f. Video on Gradient boost, part 1, parts 2-4 follow thereafter <a class="reference external" href="https://www.youtube.com/watch?v=3CC4N4z3GJc">https://www.youtube.com/watch?v=3CC4N4z3GJc</a></p>
551-
<p>g. Decision Trees: Rashcka et al chapter 3 pages 86-98, and chapter 7 on Ensemble methods, Voting and Bagging and Gradient Boosting. See also lecture from STK-IN4300, lecture 7 at <a class="reference external" href="https://www.uio.no/studier/emner/matnat/math/STK-IN4300/h20/slides/lecture_7.pdf">https://www.uio.no/studier/emner/matnat/math/STK-IN4300/h20/slides/lecture_7.pdf</a>.</p>
545+
<p>c. Video of lecture at <a class="reference external" href="https://youtu.be/iTaRdAPQnDA">https://youtu.be/iTaRdAPQnDA</a></p>
546+
<p>d. Whiteboard notes at <a class="github reference external" href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesNovember25.pdf">CompPhysics/MachineLearning</a></p>
547+
<p>e. Video on Decision trees <a class="reference external" href="https://www.youtube.com/watch?v=RmajweUFKvM&amp;amp;ab_channel=Simplilearn">https://www.youtube.com/watch?v=RmajweUFKvM&amp;ab_channel=Simplilearn</a></p>
548+
<p>f. Video on boosting methods <a class="reference external" href="https://www.youtube.com/watch?v=wPqtzj5VZus&amp;amp;ab_channel=H2O.ai">https://www.youtube.com/watch?v=wPqtzj5VZus&amp;ab_channel=H2O.ai</a></p>
549+
<p>g. Video on AdaBoost <a class="reference external" href="https://www.youtube.com/watch?v=LsK-xG1cLYA">https://www.youtube.com/watch?v=LsK-xG1cLYA</a></p>
550+
<p>h. Video on Gradient boost, part 1, parts 2-4 follow thereafter <a class="reference external" href="https://www.youtube.com/watch?v=3CC4N4z3GJc">https://www.youtube.com/watch?v=3CC4N4z3GJc</a></p>
551+
<p>i. Decision Trees: Rashcka et al chapter 3 pages 86-98, and chapter 7 on Ensemble methods, Voting and Bagging and Gradient Boosting. See also lecture from STK-IN4300, lecture 7 at <a class="reference external" href="https://www.uio.no/studier/emner/matnat/math/STK-IN4300/h20/slides/lecture_7.pdf">https://www.uio.no/studier/emner/matnat/math/STK-IN4300/h20/slides/lecture_7.pdf</a>.</p>
552552
</section>
553553
<section id="lab-sessions">
554554
<h2>Lab sessions<a class="headerlink" href="#lab-sessions" title="Link to this heading">#</a></h2>
@@ -651,17 +651,17 @@ <h2>Random Forests Compared with other Methods on the Cancer Data<a class="heade
651651
(143, 30)
652652
Test set accuracy Logistic Regression with scaled data: 0.96
653653
Test set accuracy SVM with scaled data: 0.96
654-
Test set accuracy with Decision Trees and scaled data: 0.91
654+
Test set accuracy with Decision Trees and scaled data: 0.92
655655
</pre></div>
656656
</div>
657-
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[1. 0.8 0.93333333 1. 1. 0.92857143
657+
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[1. 0.73333333 0.93333333 1. 1. 0.92857143
658658
1. 0.92857143 0.92857143 0.92857143]
659-
Test set accuracy with Random Forests and scaled data: 0.98
659+
Test set accuracy with Random Forests and scaled data: 0.97
660660
</pre></div>
661661
</div>
662-
<img alt="_images/936367d3bdcae10aafd2cc903d30ce54287b55ddddaa7af46f455a620a3745cd.png" src="_images/936367d3bdcae10aafd2cc903d30ce54287b55ddddaa7af46f455a620a3745cd.png" />
663-
<img alt="_images/be8d5df8bb940da757ef8fd6eac65ebe0352641500f781f4284c949ce274e1ee.png" src="_images/be8d5df8bb940da757ef8fd6eac65ebe0352641500f781f4284c949ce274e1ee.png" />
664-
<img alt="_images/8f696a60652d0003039dd9a563eb80367f1d574ca15b61c7a3f9757b19083d26.png" src="_images/8f696a60652d0003039dd9a563eb80367f1d574ca15b61c7a3f9757b19083d26.png" />
662+
<img alt="_images/90075505602c3f17740e87e303ddff0ae0ff2ec0245679468ad8fb7cb2ba3b3a.png" src="_images/90075505602c3f17740e87e303ddff0ae0ff2ec0245679468ad8fb7cb2ba3b3a.png" />
663+
<img alt="_images/a318a67ffc1f6a60c2418c7f612568dd9b06752eb57ba2c4643dcc6e7d1a01dc.png" src="_images/a318a67ffc1f6a60c2418c7f612568dd9b06752eb57ba2c4643dcc6e7d1a01dc.png" />
664+
<img alt="_images/1d150add40cbaa91d293348b988a5fbd2e04c68c41f11a70ebf78ac5686e7e4a.png" src="_images/1d150add40cbaa91d293348b988a5fbd2e04c68c41f11a70ebf78ac5686e7e4a.png" />
665665
</div>
666666
</div>
667667
<p>Recall that the cumulative gains curve shows the percentage of the
@@ -1173,30 +1173,30 @@ <h2>Gradient Boosting, Examples of Regression<a class="headerlink" href="#gradie
11731173
</div>
11741174
<div class="cell_output docutils container">
11751175
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Max depth: 1
1176-
Error: 0.4203129333425336
1177-
Bias^2: 0.21226966048908316
1178-
Var: 0.20804327285345042
1179-
0.4203129333425336 &gt;= 0.21226966048908316 + 0.20804327285345042 = 0.4203129333425336
1176+
Error: 0.4010613825254484
1177+
Bias^2: 0.2079593417034804
1178+
Var: 0.19310204082196794
1179+
0.4010613825254484 &gt;= 0.2079593417034804 + 0.19310204082196794 = 0.4010613825254483
11801180
Max depth: 2
1181-
Error: 0.40767639731018696
1182-
Bias^2: 0.21200998139721822
1183-
Var: 0.19566641591296877
1184-
0.40767639731018696 &gt;= 0.21200998139721822 + 0.19566641591296877 = 0.407676397310187
1181+
Error: 0.4250776117755916
1182+
Bias^2: 0.2080984218270197
1183+
Var: 0.21697918994857185
1184+
0.4250776117755916 &gt;= 0.2080984218270197 + 0.21697918994857185 = 0.42507761177559156
11851185
Max depth: 3
1186-
Error: 0.4076774836661818
1187-
Bias^2: 0.2120099429256955
1188-
Var: 0.19566754074048626
1189-
0.4076774836661818 &gt;= 0.2120099429256955 + 0.19566754074048626 = 0.40767748366618173
1186+
Error: 0.4250796355306808
1187+
Bias^2: 0.2080985447081304
1188+
Var: 0.21698109082255032
1189+
0.4250796355306808 &gt;= 0.2080985447081304 + 0.21698109082255032 = 0.42507963553068073
11901190
Max depth: 4
1191-
Error: 0.4076774836661818
1192-
Bias^2: 0.2120099429256955
1193-
Var: 0.19566754074048626
1194-
0.4076774836661818 &gt;= 0.2120099429256955 + 0.19566754074048626 = 0.40767748366618173
1191+
Error: 0.4250796355306808
1192+
Bias^2: 0.2080985447081304
1193+
Var: 0.21698109082255038
1194+
0.4250796355306808 &gt;= 0.2080985447081304 + 0.21698109082255038 = 0.4250796355306808
11951195
Max depth: 5
1196-
Error: 0.4076774836661816
1197-
Bias^2: 0.2120099429256955
1198-
Var: 0.1956675407404862
1199-
0.4076774836661816 &gt;= 0.2120099429256955 + 0.1956675407404862 = 0.40767748366618173
1196+
Error: 0.42507963553068073
1197+
Bias^2: 0.2080985447081304
1198+
Var: 0.21698109082255032
1199+
0.42507963553068073 &gt;= 0.2080985447081304 + 0.21698109082255032 = 0.42507963553068073
12001200
</pre></div>
12011201
</div>
12021202
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>/Users/mhjensen/miniforge3/envs/myenv/lib/python3.9/site-packages/sklearn/ensemble/_gb.py:424: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
@@ -1211,7 +1211,7 @@ <h2>Gradient Boosting, Examples of Regression<a class="headerlink" href="#gradie
12111211
y = column_or_1d(y, warn=True)
12121212
</pre></div>
12131213
</div>
1214-
<img alt="_images/82abcfe355d89bb3d7dd4eb6e9ffe48d1f3f3511015d80687fbe0db1b8fd5999.png" src="_images/82abcfe355d89bb3d7dd4eb6e9ffe48d1f3f3511015d80687fbe0db1b8fd5999.png" />
1214+
<img alt="_images/801d16873af4f485d9c398ac11811a7d9c4f25dd40c995cf7565bd81af8071c5.png" src="_images/801d16873af4f485d9c398ac11811a7d9c4f25dd40c995cf7565bd81af8071c5.png" />
12151215
</div>
12161216
</div>
12171217
</section>
@@ -1264,13 +1264,13 @@ <h2>Gradient Boosting, Classification Example<a class="headerlink" href="#gradie
12641264
(143, 30)
12651265
</pre></div>
12661266
</div>
1267-
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[0.93333333 0.93333333 0.93333333 0.92857143 1. 0.92857143
1267+
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[0.93333333 0.93333333 0.86666667 1. 1. 0.92857143
12681268
1. 0.92857143 0.85714286 0.92857143]
1269-
Test set accuracy with Gradient boosting and scaled data: 0.99
1269+
Test set accuracy with Gradient boosting and scaled data: 0.97
12701270
</pre></div>
12711271
</div>
1272-
<img alt="_images/e0c9e5cfc32bfe482c04b2091d5d98aa80212c0eef5e22892d16f73e93be8afc.png" src="_images/e0c9e5cfc32bfe482c04b2091d5d98aa80212c0eef5e22892d16f73e93be8afc.png" />
1273-
<img alt="_images/796ded1719cb864b630c37e7692028ee18f0df7fb5a0ed2de15817b0c2f36c0c.png" src="_images/796ded1719cb864b630c37e7692028ee18f0df7fb5a0ed2de15817b0c2f36c0c.png" />
1272+
<img alt="_images/90075505602c3f17740e87e303ddff0ae0ff2ec0245679468ad8fb7cb2ba3b3a.png" src="_images/90075505602c3f17740e87e303ddff0ae0ff2ec0245679468ad8fb7cb2ba3b3a.png" />
1273+
<img alt="_images/de0019c6a0f8206c4c2b0f29eedfececf3b0ad5a07a733217a9ed5b8e4cae808.png" src="_images/de0019c6a0f8206c4c2b0f29eedfececf3b0ad5a07a733217a9ed5b8e4cae808.png" />
12741274
<img alt="_images/45972a93ed8e1f6ed66fe9c322a65b549b39dd2c80e16d5081151b2bc713b669.png" src="_images/45972a93ed8e1f6ed66fe9c322a65b549b39dd2c80e16d5081151b2bc713b669.png" />
12751275
</div>
12761276
</div>

0 commit comments

Comments
 (0)