Skip to content

Commit 5952608

Browse files
committed
update
1 parent 504dc6c commit 5952608

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

62 files changed

+2099
-60
lines changed
9.36 KB
Binary file not shown.
23.3 KB
Binary file not shown.
26 Bytes
Binary file not shown.
Lines changed: 333 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,333 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"id": "6cc2501d",
6+
"metadata": {
7+
"editable": true
8+
},
9+
"source": [
10+
"<!-- HTML file automatically generated from DocOnce source (https://github.com/doconce/doconce/)\n",
11+
"doconce format html exercisesweek47.do.txt -->\n",
12+
"<!-- dom:TITLE: Exercise week 47-48 -->"
13+
]
14+
},
15+
{
16+
"cell_type": "markdown",
17+
"id": "7aae5111",
18+
"metadata": {
19+
"editable": true
20+
},
21+
"source": [
22+
"# Exercise week 47-48\n",
23+
"**November 17-28, 2025**\n",
24+
"\n",
25+
"Date: **Deadline is Friday November 28 at midnight**"
26+
]
27+
},
28+
{
29+
"cell_type": "markdown",
30+
"id": "5ef837a4",
31+
"metadata": {
32+
"editable": true
33+
},
34+
"source": [
35+
"# Overarching aims of the exercises this week\n",
36+
"\n",
37+
"The exercise set this week is meant as a summary of many of the\n",
38+
"central elements in various machine learning algorithms we have discussed throught the semester. You don't need to answer all questions."
39+
]
40+
},
41+
{
42+
"cell_type": "markdown",
43+
"id": "3f1ef66b",
44+
"metadata": {
45+
"editable": true
46+
},
47+
"source": [
48+
"## Linear and logistic regression methods"
49+
]
50+
},
51+
{
52+
"cell_type": "markdown",
53+
"id": "e86c9231",
54+
"metadata": {
55+
"editable": true
56+
},
57+
"source": [
58+
"### Question 1:\n",
59+
"\n",
60+
"Which of the following is not an assumption of ordinary least squares linear regression?\n",
61+
"\n",
62+
"* There is a linearity between predictors/features and target/outout\n",
63+
"\n",
64+
" * The inputs/features distributed according to a normal/gaussian distribution"
65+
]
66+
},
67+
{
68+
"cell_type": "markdown",
69+
"id": "9acef906",
70+
"metadata": {
71+
"editable": true
72+
},
73+
"source": [
74+
"### Question 2:\n",
75+
"\n",
76+
"The mean squared error cost function for linear regression is convex in the parameters, guaranteeing a unique global minimum. True or False? Motivate your answer."
77+
]
78+
},
79+
{
80+
"cell_type": "markdown",
81+
"id": "fb3bf02e",
82+
"metadata": {
83+
"editable": true
84+
},
85+
"source": [
86+
"### Question 3:\n",
87+
"\n",
88+
"Which statement about logistic regression is false?\n",
89+
"\n",
90+
"* Logistic regression is used for binary classification.\n",
91+
"\n",
92+
" * It uses the sigmoid function to map linear scores to probabilities.\n",
93+
"\n",
94+
" * It has an analytical closed-form solution.\n",
95+
"\n",
96+
" * Its log-loss (cross-entropy) is convex."
97+
]
98+
},
99+
{
100+
"cell_type": "markdown",
101+
"id": "e8ab306a",
102+
"metadata": {
103+
"editable": true
104+
},
105+
"source": [
106+
"### Question 4:\n",
107+
"\n",
108+
"Logistic regression produces a linear decision boundary in the input space. True or False? Explain."
109+
]
110+
},
111+
{
112+
"cell_type": "markdown",
113+
"id": "d695e6bb",
114+
"metadata": {
115+
"editable": true
116+
},
117+
"source": [
118+
"### Question 5:\n",
119+
"\n",
120+
"Give two reasons why logistic regression is preferred over linear regression for binary classification."
121+
]
122+
},
123+
{
124+
"cell_type": "markdown",
125+
"id": "8c398642",
126+
"metadata": {
127+
"editable": true
128+
},
129+
"source": [
130+
"## Neural networks"
131+
]
132+
},
133+
{
134+
"cell_type": "markdown",
135+
"id": "f58fac35",
136+
"metadata": {
137+
"editable": true
138+
},
139+
"source": [
140+
"### Question 6:\n",
141+
"\n",
142+
"Which statement is not true for fully-connected neural networks?\n",
143+
"\n",
144+
"* Without nonlinear activation functions they reduce to a single linear model.\n",
145+
"\n",
146+
" * Training relies on backpropagation using the chain rule.\n",
147+
"\n",
148+
" * A single hidden layer can approximate any continuous function on a compact set.\n",
149+
"\n",
150+
" * The loss surface of a deep neural network is convex."
151+
]
152+
},
153+
{
154+
"cell_type": "markdown",
155+
"id": "9bed2727",
156+
"metadata": {
157+
"editable": true
158+
},
159+
"source": [
160+
"### Question 7:\n",
161+
"\n",
162+
"Using sigmoid activations in many layers of a deep neural network can cause vanishing gradients. True or False? Explain."
163+
]
164+
},
165+
{
166+
"cell_type": "markdown",
167+
"id": "e3c1865d",
168+
"metadata": {
169+
"editable": true
170+
},
171+
"source": [
172+
"### Question 8:\n",
173+
"\n",
174+
"Describe the vanishing gradient problem: Why does it occur? Mention one technique to mitigate it and explain briefly."
175+
]
176+
},
177+
{
178+
"cell_type": "markdown",
179+
"id": "6d1ad1a8",
180+
"metadata": {
181+
"editable": true
182+
},
183+
"source": [
184+
"### Question 9:\n",
185+
"\n",
186+
"Consider a fully-connected network with layer sizes $n_0$ (the input\n",
187+
"layer) ,$n_1$ (first hidden layer), $\\dots, n_L$, where $n_L$ is the\n",
188+
"output layer. Derive a general formula for the total number of\n",
189+
"trainable parameters (weights + biases)."
190+
]
191+
},
192+
{
193+
"cell_type": "markdown",
194+
"id": "f5b2ed47",
195+
"metadata": {
196+
"editable": true
197+
},
198+
"source": [
199+
"## Convolutional Neural Networks"
200+
]
201+
},
202+
{
203+
"cell_type": "markdown",
204+
"id": "93d54a83",
205+
"metadata": {
206+
"editable": true
207+
},
208+
"source": [
209+
"### Question 10:\n",
210+
"\n",
211+
"Which of the following is not a typical property or advantage of CNNs?\n",
212+
"\n",
213+
"* Local receptive fields\n",
214+
"\n",
215+
" * Weight sharing\n",
216+
"\n",
217+
" * More parameters than fully-connected layers\n",
218+
"\n",
219+
" * Pooling layers offering some translation invariance"
220+
]
221+
},
222+
{
223+
"cell_type": "markdown",
224+
"id": "5aefcc46",
225+
"metadata": {
226+
"editable": true
227+
},
228+
"source": [
229+
"### Question 11:\n",
230+
"\n",
231+
"Using zero-padding in convolutional layers can preserve the input\n",
232+
"spatial dimensions when using a $3 \\times 3$ kernel/filter, stride 1,\n",
233+
"and padding $P = 1$. True or False?"
234+
]
235+
},
236+
{
237+
"cell_type": "markdown",
238+
"id": "348b6806",
239+
"metadata": {
240+
"editable": true
241+
},
242+
"source": [
243+
"### Question 12:\n",
244+
"\n",
245+
"Given input width $W$, kernel size $K$, stride S, and padding P,\n",
246+
"derive the formula for the output width $W_{\\text{out}} = \\frac{W - K+ 2P}{S} + 1$."
247+
]
248+
},
249+
{
250+
"cell_type": "markdown",
251+
"id": "a629397f",
252+
"metadata": {
253+
"editable": true
254+
},
255+
"source": [
256+
"### Question 13:\n",
257+
"\n",
258+
"A convolutional layer has: $C_{\\text{in}}$ input channels,\n",
259+
"$C_{\\text{out}}$ output channels (filters) and kernel size $K_h \\times\n",
260+
"K_w$. Compute the number of trainable parameters including biases."
261+
]
262+
},
263+
{
264+
"cell_type": "markdown",
265+
"id": "087780b2",
266+
"metadata": {
267+
"editable": true
268+
},
269+
"source": [
270+
"## Recurrent Neural Networks"
271+
]
272+
},
273+
{
274+
"cell_type": "markdown",
275+
"id": "55dd5f95",
276+
"metadata": {
277+
"editable": true
278+
},
279+
"source": [
280+
"### Question 14:\n",
281+
"\n",
282+
"Which statement about simple RNNs is false?\n",
283+
"\n",
284+
"* They maintain a hidden state updated each time step.\n",
285+
"\n",
286+
" * They use the same weight matrices at every time step.\n",
287+
"\n",
288+
" * They handle sequences of arbitrary length.\n",
289+
"\n",
290+
" * They eliminate the vanishing gradient problem."
291+
]
292+
},
293+
{
294+
"cell_type": "markdown",
295+
"id": "fd70bb6d",
296+
"metadata": {
297+
"editable": true
298+
},
299+
"source": [
300+
"### Question 15:\n",
301+
"\n",
302+
"LSTMs mitigate the vanishing gradient problem by using gating mechanisms (input, forget, output gates). True or False? Explain."
303+
]
304+
},
305+
{
306+
"cell_type": "markdown",
307+
"id": "ab7ec77a",
308+
"metadata": {
309+
"editable": true
310+
},
311+
"source": [
312+
"### Question 16:\n",
313+
"\n",
314+
"What is Backpropagation Through Time (BPTT) and why is it required for training RNNs?"
315+
]
316+
},
317+
{
318+
"cell_type": "markdown",
319+
"id": "e32e01d4",
320+
"metadata": {
321+
"editable": true
322+
},
323+
"source": [
324+
"### Question 17:\n",
325+
"\n",
326+
"What does a sliding window do? And why would we use it?"
327+
]
328+
}
329+
],
330+
"metadata": {},
331+
"nbformat": 4,
332+
"nbformat_minor": 5
333+
}

doc/LectureNotes/_build/html/chapter1.html

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -266,6 +266,8 @@
266266
<li class="toctree-l1"><a class="reference internal" href="week45.html">Week 45, Convolutional Neural Networks (CCNs)</a></li>
267267
<li class="toctree-l1"><a class="reference internal" href="week46.html">Week 46: Decision Trees, Ensemble methods and Random Forests</a></li>
268268
<li class="toctree-l1"><a class="reference internal" href="week47.html">Week 47: Recurrent neural networks and Autoencoders</a></li>
269+
<li class="toctree-l1"><a class="reference internal" href="exercisesweek47.html">Exercise week 47-48</a></li>
270+
269271
</ul>
270272
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Projects</span></p>
271273
<ul class="nav bd-sidenav">

doc/LectureNotes/_build/html/chapter10.html

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -266,6 +266,8 @@
266266
<li class="toctree-l1"><a class="reference internal" href="week45.html">Week 45, Convolutional Neural Networks (CCNs)</a></li>
267267
<li class="toctree-l1"><a class="reference internal" href="week46.html">Week 46: Decision Trees, Ensemble methods and Random Forests</a></li>
268268
<li class="toctree-l1"><a class="reference internal" href="week47.html">Week 47: Recurrent neural networks and Autoencoders</a></li>
269+
<li class="toctree-l1"><a class="reference internal" href="exercisesweek47.html">Exercise week 47-48</a></li>
270+
269271
</ul>
270272
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Projects</span></p>
271273
<ul class="nav bd-sidenav">

doc/LectureNotes/_build/html/chapter11.html

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -266,6 +266,8 @@
266266
<li class="toctree-l1"><a class="reference internal" href="week45.html">Week 45, Convolutional Neural Networks (CCNs)</a></li>
267267
<li class="toctree-l1"><a class="reference internal" href="week46.html">Week 46: Decision Trees, Ensemble methods and Random Forests</a></li>
268268
<li class="toctree-l1"><a class="reference internal" href="week47.html">Week 47: Recurrent neural networks and Autoencoders</a></li>
269+
<li class="toctree-l1"><a class="reference internal" href="exercisesweek47.html">Exercise week 47-48</a></li>
270+
269271
</ul>
270272
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Projects</span></p>
271273
<ul class="nav bd-sidenav">

doc/LectureNotes/_build/html/chapter12.html

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -266,6 +266,8 @@
266266
<li class="toctree-l1"><a class="reference internal" href="week45.html">Week 45, Convolutional Neural Networks (CCNs)</a></li>
267267
<li class="toctree-l1"><a class="reference internal" href="week46.html">Week 46: Decision Trees, Ensemble methods and Random Forests</a></li>
268268
<li class="toctree-l1"><a class="reference internal" href="week47.html">Week 47: Recurrent neural networks and Autoencoders</a></li>
269+
<li class="toctree-l1"><a class="reference internal" href="exercisesweek47.html">Exercise week 47-48</a></li>
270+
269271
</ul>
270272
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Projects</span></p>
271273
<ul class="nav bd-sidenav">

doc/LectureNotes/_build/html/chapter13.html

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -266,6 +266,8 @@
266266
<li class="toctree-l1"><a class="reference internal" href="week45.html">Week 45, Convolutional Neural Networks (CCNs)</a></li>
267267
<li class="toctree-l1"><a class="reference internal" href="week46.html">Week 46: Decision Trees, Ensemble methods and Random Forests</a></li>
268268
<li class="toctree-l1"><a class="reference internal" href="week47.html">Week 47: Recurrent neural networks and Autoencoders</a></li>
269+
<li class="toctree-l1"><a class="reference internal" href="exercisesweek47.html">Exercise week 47-48</a></li>
270+
269271
</ul>
270272
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Projects</span></p>
271273
<ul class="nav bd-sidenav">

doc/LectureNotes/_build/html/chapter2.html

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -266,6 +266,8 @@
266266
<li class="toctree-l1"><a class="reference internal" href="week45.html">Week 45, Convolutional Neural Networks (CCNs)</a></li>
267267
<li class="toctree-l1"><a class="reference internal" href="week46.html">Week 46: Decision Trees, Ensemble methods and Random Forests</a></li>
268268
<li class="toctree-l1"><a class="reference internal" href="week47.html">Week 47: Recurrent neural networks and Autoencoders</a></li>
269+
<li class="toctree-l1"><a class="reference internal" href="exercisesweek47.html">Exercise week 47-48</a></li>
270+
269271
</ul>
270272
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Projects</span></p>
271273
<ul class="nav bd-sidenav">

0 commit comments

Comments
 (0)