|
| 1 | + |
| 2 | +import numpy as np |
| 3 | +import pandas as pd |
| 4 | +from math import * |
| 5 | +import matplotlib.pyplot as plt |
| 6 | +import os |
| 7 | + |
| 8 | +# Where to save the figures and data files |
| 9 | +PROJECT_ROOT_DIR = "Results" |
| 10 | +FIGURE_ID = "Results/FigureFiles" |
| 11 | +DATA_ID = "DataFiles/" |
| 12 | + |
| 13 | +if not os.path.exists(PROJECT_ROOT_DIR): |
| 14 | + os.mkdir(PROJECT_ROOT_DIR) |
| 15 | + |
| 16 | +if not os.path.exists(FIGURE_ID): |
| 17 | + os.makedirs(FIGURE_ID) |
| 18 | + |
| 19 | +if not os.path.exists(DATA_ID): |
| 20 | + os.makedirs(DATA_ID) |
| 21 | + |
| 22 | +def image_path(fig_id): |
| 23 | + return os.path.join(FIGURE_ID, fig_id) |
| 24 | + |
| 25 | +def data_path(dat_id): |
| 26 | + return os.path.join(DATA_ID, dat_id) |
| 27 | + |
| 28 | +def save_fig(fig_id): |
| 29 | + plt.savefig(image_path(fig_id) + ".png", format='png') |
| 30 | + |
| 31 | + |
| 32 | +def SpringForce(v,x,t): |
| 33 | +# note here that we have divided by mass and we return the acceleration |
| 34 | + return -2*gamma*v-x+Ftilde*cos(t*Omegatilde) |
| 35 | + |
| 36 | + |
| 37 | +def RK4(v,x,t,n,Force): |
| 38 | + for i in range(n-1): |
| 39 | +# Setting up k1 |
| 40 | + k1x = DeltaT*v[i] |
| 41 | + k1v = DeltaT*Force(v[i],x[i],t[i]) |
| 42 | +# Setting up k2 |
| 43 | + vv = v[i]+k1v*0.5 |
| 44 | + xx = x[i]+k1x*0.5 |
| 45 | + k2x = DeltaT*vv |
| 46 | + k2v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5) |
| 47 | +# Setting up k3 |
| 48 | + vv = v[i]+k2v*0.5 |
| 49 | + xx = x[i]+k2x*0.5 |
| 50 | + k3x = DeltaT*vv |
| 51 | + k3v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5) |
| 52 | +# Setting up k4 |
| 53 | + vv = v[i]+k3v |
| 54 | + xx = x[i]+k3x |
| 55 | + k4x = DeltaT*vv |
| 56 | + k4v = DeltaT*Force(vv,xx,t[i]+DeltaT) |
| 57 | +# Final result |
| 58 | + x[i+1] = x[i]+(k1x+2*k2x+2*k3x+k4x)/6. |
| 59 | + v[i+1] = v[i]+(k1v+2*k2v+2*k3v+k4v)/6. |
| 60 | + t[i+1] = t[i] + DeltaT |
| 61 | + |
| 62 | + |
| 63 | +# Main part begins here |
| 64 | + |
| 65 | +DeltaT = 0.001 |
| 66 | +#set up arrays |
| 67 | +tfinal = 20 # in dimensionless time |
| 68 | +n = ceil(tfinal/DeltaT) |
| 69 | +# set up arrays for t, v, and x |
| 70 | +t = np.zeros(n) |
| 71 | +v = np.zeros(n) |
| 72 | +x = np.zeros(n) |
| 73 | +# Initial conditions (can change to more than one dim) |
| 74 | +x0 = 1.0 |
| 75 | +v0 = 0.0 |
| 76 | +x[0] = x0 |
| 77 | +v[0] = v0 |
| 78 | +gamma = 0.2 |
| 79 | +Omegatilde = 0.5 |
| 80 | +Ftilde = 1.0 |
| 81 | +# Start integrating using Euler's method |
| 82 | +# Note that we define the force function as a SpringForce |
| 83 | +RK4(v,x,t,n,SpringForce) |
| 84 | + |
| 85 | +# Plot position as function of time |
| 86 | +fig, ax = plt.subplots() |
| 87 | +ax.set_ylabel('x[m]') |
| 88 | +ax.set_xlabel('t[s]') |
| 89 | +ax.plot(t, x) |
| 90 | +fig.tight_layout() |
| 91 | +save_fig("ForcedBlockRK4") |
| 92 | +plt.show() |
0 commit comments