Skip to content

Commit 2202f0d

Browse files
committed
correcting typos
1 parent 250a59f commit 2202f0d

File tree

7 files changed

+373
-363
lines changed

7 files changed

+373
-363
lines changed

doc/pub/week41/html/week41-bs.html

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -44,6 +44,7 @@
4444
2,
4545
None,
4646
'material-for-the-lecture-on-monday-october-6-2025'),
47+
('Readings and Videos:', 2, None, 'readings-and-videos'),
4748
('Mathematics of deep learning',
4849
2,
4950
None,
@@ -330,6 +331,7 @@
330331
<ul class="dropdown-menu">
331332
<!-- navigation toc: --> <li><a href="#plan-for-week-41-october-6-10" style="font-size: 80%;">Plan for week 41, October 6-10</a></li>
332333
<!-- navigation toc: --> <li><a href="#material-for-the-lecture-on-monday-october-6-2025" style="font-size: 80%;">Material for the lecture on Monday October 6, 2025</a></li>
334+
<!-- navigation toc: --> <li><a href="#readings-and-videos" style="font-size: 80%;">Readings and Videos:</a></li>
333335
<!-- navigation toc: --> <li><a href="#mathematics-of-deep-learning" style="font-size: 80%;">Mathematics of deep learning</a></li>
334336
<!-- navigation toc: --> <li><a href="#reminder-on-books-with-hands-on-material-and-codes" style="font-size: 80%;">Reminder on books with hands-on material and codes</a></li>
335337
<!-- navigation toc: --> <li><a href="#lab-sessions-on-tuesday-and-wednesday" style="font-size: 80%;">Lab sessions on Tuesday and Wednesday</a></li>
@@ -452,24 +454,24 @@ <h2 id="material-for-the-lecture-on-monday-october-6-2025" class="anchor">Materi
452454
<ol>
453455
<li> Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model.</li>
454456
<li> Building our own Feed-forward Neural Network, getting started
455-
<!-- * Video of lecture notes at <a href="https://youtu.be/pMRUbf9E-gM" target="_self"><tt>https://youtu.be/pMRUbf9E-gM</tt></a> -->
456-
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf" target="_self"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf</tt></a> --></li>
457+
<!-- * Video of lecture notes at URL:"" -->
458+
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf" target="_self"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf</tt></a> --></li>
457459
</ol>
460+
<!-- !split -->
461+
<h2 id="readings-and-videos" class="anchor">Readings and Videos: </h2>
458462
<div class="panel panel-default">
459463
<div class="panel-body">
460464
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
461465
<ol>
462466
<li> These lecture notes</li>
463467
<li> For neural networks we recommend Goodfellow et al chapters 6 and 7.</li>
464-
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <a href="https://github.com/rasbt/machine-learning-book" target="_self">GitHub</a>
465-
<ol type="a"></li>
468+
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <a href="https://github.com/rasbt/machine-learning-book" target="_self">GitHub</a></li>
466469
<li> Neural Networks demystified at <a href="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_self"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
467-
</ol>
468470
<li> Building Neural Networks from scratch at <a href="https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex" target="_self"><tt>https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex</tt></a></li>
469471
<li> Video on Neural Networks at <a href="https://www.youtube.com/watch?v=CqOfi41LfDw" target="_self"><tt>https://www.youtube.com/watch?v=CqOfi41LfDw</tt></a></li>
470472
<li> Video on the back propagation algorithm at <a href="https://www.youtube.com/watch?v=Ilg3gGewQ5U" target="_self"><tt>https://www.youtube.com/watch?v=Ilg3gGewQ5U</tt></a></li>
473+
<li> We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <a href="http://neuralnetworksanddeeplearning.com/chap4.html" target="_self"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</li>
471474
</ol>
472-
<p>We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <a href="http://neuralnetworksanddeeplearning.com/chap4.html" target="_self"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</p>
473475
</div>
474476
</div>
475477

@@ -493,19 +495,18 @@ <h2 id="reminder-on-books-with-hands-on-material-and-codes" class="anchor">Remin
493495
<div class="panel panel-default">
494496
<div class="panel-body">
495497
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
496-
<ul>
497-
<li> <a href="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_self">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a></li>
498-
</ul>
498+
<a href="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_self">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a>
499499
</div>
500500
</div>
501501

502502

503503
<!-- !split -->
504504
<h2 id="lab-sessions-on-tuesday-and-wednesday" class="anchor">Lab sessions on Tuesday and Wednesday </h2>
505505

506-
<ol>
507-
<li> Getting started with coding neural network. The exercises this week aim at setting up the feed-forward part of a neural network.</li>
508-
</ol>
506+
<p>Aim: Getting started with coding neural network. The exercises this
507+
week aim at setting up the feed-forward part of a neural network.
508+
</p>
509+
509510
<!-- !split -->
510511
<h2 id="lecture-monday-october-6" class="anchor">Lecture Monday October 6 </h2>
511512

doc/pub/week41/html/week41-reveal.html

Lines changed: 13 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -200,27 +200,26 @@ <h2 id="material-for-the-lecture-on-monday-october-6-2025">Material for the lect
200200
<ol>
201201
<p><li> Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model.</li>
202202
<p><li> Building our own Feed-forward Neural Network, getting started
203-
<!-- * Video of lecture notes at <a href="https://youtu.be/pMRUbf9E-gM" target="_blank"><tt>https://youtu.be/pMRUbf9E-gM</tt></a> -->
204-
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf</tt></a> --></li>
203+
<!-- * Video of lecture notes at URL:"" -->
204+
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf</tt></a> --></li>
205205
</ol>
206-
<p>
206+
</section>
207+
208+
<section>
209+
<h2 id="readings-and-videos">Readings and Videos: </h2>
207210
<div class="alert alert-block alert-block alert-text-normal">
208-
<b>Readings and Videos:</b>
211+
<b></b>
209212
<p>
210213
<ol>
211214
<p><li> These lecture notes</li>
212215
<p><li> For neural networks we recommend Goodfellow et al chapters 6 and 7.</li>
213-
<p><li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <a href="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a>
214-
<ol type="a"></li>
216+
<p><li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <a href="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a></li>
215217
<p><li> Neural Networks demystified at <a href="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
216-
</ol>
217-
<p>
218218
<p><li> Building Neural Networks from scratch at <a href="https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex" target="_blank"><tt>https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex</tt></a></li>
219219
<p><li> Video on Neural Networks at <a href="https://www.youtube.com/watch?v=CqOfi41LfDw" target="_blank"><tt>https://www.youtube.com/watch?v=CqOfi41LfDw</tt></a></li>
220220
<p><li> Video on the back propagation algorithm at <a href="https://www.youtube.com/watch?v=Ilg3gGewQ5U" target="_blank"><tt>https://www.youtube.com/watch?v=Ilg3gGewQ5U</tt></a></li>
221+
<p><li> We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <a href="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</li>
221222
</ol>
222-
<p>
223-
<p>We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <a href="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</p>
224223
</div>
225224
</section>
226225

@@ -242,18 +241,16 @@ <h2 id="reminder-on-books-with-hands-on-material-and-codes">Reminder on books wi
242241
<div class="alert alert-block alert-block alert-text-normal">
243242
<b></b>
244243
<p>
245-
<ul>
246-
<p><li> <a href="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a></li>
247-
</ul>
244+
<a href="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a>
248245
</div>
249246
</section>
250247

251248
<section>
252249
<h2 id="lab-sessions-on-tuesday-and-wednesday">Lab sessions on Tuesday and Wednesday </h2>
253250

254-
<ol>
255-
<p><li> Getting started with coding neural network. The exercises this week aim at setting up the feed-forward part of a neural network.</li>
256-
</ol>
251+
<p>Aim: Getting started with coding neural network. The exercises this
252+
week aim at setting up the feed-forward part of a neural network.
253+
</p>
257254
</section>
258255

259256
<section>

doc/pub/week41/html/week41-solarized.html

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -71,6 +71,7 @@
7171
2,
7272
None,
7373
'material-for-the-lecture-on-monday-october-6-2025'),
74+
('Readings and Videos:', 2, None, 'readings-and-videos'),
7475
('Mathematics of deep learning',
7576
2,
7677
None,
@@ -367,24 +368,24 @@ <h2 id="material-for-the-lecture-on-monday-october-6-2025">Material for the lect
367368
<ol>
368369
<li> Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model.</li>
369370
<li> Building our own Feed-forward Neural Network, getting started
370-
<!-- * Video of lecture notes at <a href="https://youtu.be/pMRUbf9E-gM" target="_blank"><tt>https://youtu.be/pMRUbf9E-gM</tt></a> -->
371-
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf</tt></a> --></li>
371+
<!-- * Video of lecture notes at URL:"" -->
372+
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf</tt></a> --></li>
372373
</ol>
374+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
375+
<h2 id="readings-and-videos">Readings and Videos: </h2>
373376
<div class="alert alert-block alert-block alert-text-normal">
374-
<b>Readings and Videos:</b>
377+
<b></b>
375378
<p>
376379
<ol>
377380
<li> These lecture notes</li>
378381
<li> For neural networks we recommend Goodfellow et al chapters 6 and 7.</li>
379-
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <a href="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a>
380-
<ol type="a"></li>
382+
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <a href="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a></li>
381383
<li> Neural Networks demystified at <a href="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
382-
</ol>
383384
<li> Building Neural Networks from scratch at <a href="https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex" target="_blank"><tt>https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex</tt></a></li>
384385
<li> Video on Neural Networks at <a href="https://www.youtube.com/watch?v=CqOfi41LfDw" target="_blank"><tt>https://www.youtube.com/watch?v=CqOfi41LfDw</tt></a></li>
385386
<li> Video on the back propagation algorithm at <a href="https://www.youtube.com/watch?v=Ilg3gGewQ5U" target="_blank"><tt>https://www.youtube.com/watch?v=Ilg3gGewQ5U</tt></a></li>
387+
<li> We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <a href="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</li>
386388
</ol>
387-
<p>We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <a href="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</p>
388389
</div>
389390

390391

@@ -406,18 +407,17 @@ <h2 id="reminder-on-books-with-hands-on-material-and-codes">Reminder on books wi
406407
<div class="alert alert-block alert-block alert-text-normal">
407408
<b></b>
408409
<p>
409-
<ul>
410-
<li> <a href="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a></li>
411-
</ul>
410+
<a href="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a>
412411
</div>
413412

414413

415414
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
416415
<h2 id="lab-sessions-on-tuesday-and-wednesday">Lab sessions on Tuesday and Wednesday </h2>
417416

418-
<ol>
419-
<li> Getting started with coding neural network. The exercises this week aim at setting up the feed-forward part of a neural network.</li>
420-
</ol>
417+
<p>Aim: Getting started with coding neural network. The exercises this
418+
week aim at setting up the feed-forward part of a neural network.
419+
</p>
420+
421421
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
422422
<h2 id="lecture-monday-october-6">Lecture Monday October 6 </h2>
423423

doc/pub/week41/html/week41.html

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -148,6 +148,7 @@
148148
2,
149149
None,
150150
'material-for-the-lecture-on-monday-october-6-2025'),
151+
('Readings and Videos:', 2, None, 'readings-and-videos'),
151152
('Mathematics of deep learning',
152153
2,
153154
None,
@@ -444,24 +445,24 @@ <h2 id="material-for-the-lecture-on-monday-october-6-2025">Material for the lect
444445
<ol>
445446
<li> Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model.</li>
446447
<li> Building our own Feed-forward Neural Network, getting started
447-
<!-- * Video of lecture notes at <a href="https://youtu.be/pMRUbf9E-gM" target="_blank"><tt>https://youtu.be/pMRUbf9E-gM</tt></a> -->
448-
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf</tt></a> --></li>
448+
<!-- * Video of lecture notes at URL:"" -->
449+
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf" target="_blank"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf</tt></a> --></li>
449450
</ol>
451+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
452+
<h2 id="readings-and-videos">Readings and Videos: </h2>
450453
<div class="alert alert-block alert-block alert-text-normal">
451-
<b>Readings and Videos:</b>
454+
<b></b>
452455
<p>
453456
<ol>
454457
<li> These lecture notes</li>
455458
<li> For neural networks we recommend Goodfellow et al chapters 6 and 7.</li>
456-
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <a href="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a>
457-
<ol type="a"></li>
459+
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <a href="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a></li>
458460
<li> Neural Networks demystified at <a href="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
459-
</ol>
460461
<li> Building Neural Networks from scratch at <a href="https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex" target="_blank"><tt>https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex</tt></a></li>
461462
<li> Video on Neural Networks at <a href="https://www.youtube.com/watch?v=CqOfi41LfDw" target="_blank"><tt>https://www.youtube.com/watch?v=CqOfi41LfDw</tt></a></li>
462463
<li> Video on the back propagation algorithm at <a href="https://www.youtube.com/watch?v=Ilg3gGewQ5U" target="_blank"><tt>https://www.youtube.com/watch?v=Ilg3gGewQ5U</tt></a></li>
464+
<li> We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <a href="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</li>
463465
</ol>
464-
<p>We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <a href="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</p>
465466
</div>
466467

467468

@@ -483,18 +484,17 @@ <h2 id="reminder-on-books-with-hands-on-material-and-codes">Reminder on books wi
483484
<div class="alert alert-block alert-block alert-text-normal">
484485
<b></b>
485486
<p>
486-
<ul>
487-
<li> <a href="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a></li>
488-
</ul>
487+
<a href="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a>
489488
</div>
490489

491490

492491
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
493492
<h2 id="lab-sessions-on-tuesday-and-wednesday">Lab sessions on Tuesday and Wednesday </h2>
494493

495-
<ol>
496-
<li> Getting started with coding neural network. The exercises this week aim at setting up the feed-forward part of a neural network.</li>
497-
</ol>
494+
<p>Aim: Getting started with coding neural network. The exercises this
495+
week aim at setting up the feed-forward part of a neural network.
496+
</p>
497+
498498
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
499499
<h2 id="lecture-monday-october-6">Lecture Monday October 6 </h2>
500500

0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)