You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
('Readings and Videos:', 2, None, 'readings-and-videos'),
47
48
('Mathematics of deep learning',
48
49
2,
49
50
None,
@@ -330,6 +331,7 @@
330
331
<ulclass="dropdown-menu">
331
332
<!-- navigation toc: --><li><ahref="#plan-for-week-41-october-6-10" style="font-size: 80%;">Plan for week 41, October 6-10</a></li>
332
333
<!-- navigation toc: --><li><ahref="#material-for-the-lecture-on-monday-october-6-2025" style="font-size: 80%;">Material for the lecture on Monday October 6, 2025</a></li>
334
+
<!-- navigation toc: --><li><ahref="#readings-and-videos" style="font-size: 80%;">Readings and Videos:</a></li>
333
335
<!-- navigation toc: --><li><ahref="#mathematics-of-deep-learning" style="font-size: 80%;">Mathematics of deep learning</a></li>
334
336
<!-- navigation toc: --><li><ahref="#reminder-on-books-with-hands-on-material-and-codes" style="font-size: 80%;">Reminder on books with hands-on material and codes</a></li>
335
337
<!-- navigation toc: --><li><ahref="#lab-sessions-on-tuesday-and-wednesday" style="font-size: 80%;">Lab sessions on Tuesday and Wednesday</a></li>
<li> Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model.</li>
454
456
<li> Building our own Feed-forward Neural Network, getting started
455
-
<!-- * Video of lecture notes at <a href="https://youtu.be/pMRUbf9E-gM" target="_self"><tt>https://youtu.be/pMRUbf9E-gM</tt></a> -->
456
-
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf" target="_self"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2024/NotesOctober7.pdf</tt></a> --></li>
457
+
<!-- * Video of lecture notes at URL:"" -->
458
+
<!-- * Whiteboard notes at <a href="https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf" target="_self"><tt>https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/2025/FYSSTKweek41.pdf</tt></a> --></li>
457
459
</ol>
460
+
<!-- !split -->
461
+
<h2id="readings-and-videos" class="anchor">Readings and Videos: </h2>
458
462
<divclass="panel panel-default">
459
463
<divclass="panel-body">
460
464
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
461
465
<ol>
462
466
<li> These lecture notes</li>
463
467
<li> For neural networks we recommend Goodfellow et al chapters 6 and 7.</li>
464
-
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <ahref="https://github.com/rasbt/machine-learning-book" target="_self">GitHub</a>
465
-
<oltype="a"></li>
468
+
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <ahref="https://github.com/rasbt/machine-learning-book" target="_self">GitHub</a></li>
466
469
<li> Neural Networks demystified at <ahref="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_self"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
467
-
</ol>
468
470
<li> Building Neural Networks from scratch at <ahref="https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex" target="_self"><tt>https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex</tt></a></li>
469
471
<li> Video on Neural Networks at <ahref="https://www.youtube.com/watch?v=CqOfi41LfDw" target="_self"><tt>https://www.youtube.com/watch?v=CqOfi41LfDw</tt></a></li>
470
472
<li> Video on the back propagation algorithm at <ahref="https://www.youtube.com/watch?v=Ilg3gGewQ5U" target="_self"><tt>https://www.youtube.com/watch?v=Ilg3gGewQ5U</tt></a></li>
473
+
<li> We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <ahref="http://neuralnetworksanddeeplearning.com/chap4.html" target="_self"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</li>
471
474
</ol>
472
-
<p>We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <ahref="http://neuralnetworksanddeeplearning.com/chap4.html" target="_self"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</p>
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
496
-
<ul>
497
-
<li><ahref="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_self">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a></li>
498
-
</ul>
498
+
<ahref="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_self">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a>
499
499
</div>
500
500
</div>
501
501
502
502
503
503
<!-- !split -->
504
504
<h2id="lab-sessions-on-tuesday-and-wednesday" class="anchor">Lab sessions on Tuesday and Wednesday </h2>
505
505
506
-
<ol>
507
-
<li> Getting started with coding neural network. The exercises this week aim at setting up the feed-forward part of a neural network.</li>
508
-
</ol>
506
+
<p>Aim: Getting started with coding neural network. The exercises this
507
+
week aim at setting up the feed-forward part of a neural network.
508
+
</p>
509
+
509
510
<!-- !split -->
510
511
<h2id="lecture-monday-october-6" class="anchor">Lecture Monday October 6 </h2>
<p><li> For neural networks we recommend Goodfellow et al chapters 6 and 7.</li>
213
-
<p><li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <ahref="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a>
214
-
<oltype="a"></li>
216
+
<p><li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <ahref="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a></li>
215
217
<p><li> Neural Networks demystified at <ahref="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
216
-
</ol>
217
-
<p>
218
218
<p><li> Building Neural Networks from scratch at <ahref="https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex" target="_blank"><tt>https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex</tt></a></li>
219
219
<p><li> Video on Neural Networks at <ahref="https://www.youtube.com/watch?v=CqOfi41LfDw" target="_blank"><tt>https://www.youtube.com/watch?v=CqOfi41LfDw</tt></a></li>
220
220
<p><li> Video on the back propagation algorithm at <ahref="https://www.youtube.com/watch?v=Ilg3gGewQ5U" target="_blank"><tt>https://www.youtube.com/watch?v=Ilg3gGewQ5U</tt></a></li>
221
+
<p><li> We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <ahref="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</li>
221
222
</ol>
222
-
<p>
223
-
<p>We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <ahref="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</p>
224
223
</div>
225
224
</section>
226
225
@@ -242,18 +241,16 @@ <h2 id="reminder-on-books-with-hands-on-material-and-codes">Reminder on books wi
<p><li><ahref="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a></li>
247
-
</ul>
244
+
<ahref="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a>
248
245
</div>
249
246
</section>
250
247
251
248
<section>
252
249
<h2id="lab-sessions-on-tuesday-and-wednesday">Lab sessions on Tuesday and Wednesday </h2>
253
250
254
-
<ol>
255
-
<p><li> Getting started with coding neural network. The exercises this week aim at setting up the feed-forward part of a neural network.</li>
256
-
</ol>
251
+
<p>Aim: Getting started with coding neural network. The exercises this
252
+
week aim at setting up the feed-forward part of a neural network.
<li> For neural networks we recommend Goodfellow et al chapters 6 and 7.</li>
379
-
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <ahref="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a>
380
-
<oltype="a"></li>
382
+
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <ahref="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a></li>
381
383
<li> Neural Networks demystified at <ahref="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
382
-
</ol>
383
384
<li> Building Neural Networks from scratch at <ahref="https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex" target="_blank"><tt>https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex</tt></a></li>
384
385
<li> Video on Neural Networks at <ahref="https://www.youtube.com/watch?v=CqOfi41LfDw" target="_blank"><tt>https://www.youtube.com/watch?v=CqOfi41LfDw</tt></a></li>
385
386
<li> Video on the back propagation algorithm at <ahref="https://www.youtube.com/watch?v=Ilg3gGewQ5U" target="_blank"><tt>https://www.youtube.com/watch?v=Ilg3gGewQ5U</tt></a></li>
387
+
<li> We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <ahref="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</li>
386
388
</ol>
387
-
<p>We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <ahref="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</p>
388
389
</div>
389
390
390
391
@@ -406,18 +407,17 @@ <h2 id="reminder-on-books-with-hands-on-material-and-codes">Reminder on books wi
<li><ahref="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a></li>
411
-
</ul>
410
+
<ahref="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a>
<li> For neural networks we recommend Goodfellow et al chapters 6 and 7.</li>
456
-
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <ahref="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a>
457
-
<oltype="a"></li>
459
+
<li> Rashkca et al., chapter 11, jupyter-notebook sent separately, from <ahref="https://github.com/rasbt/machine-learning-book" target="_blank">GitHub</a></li>
458
460
<li> Neural Networks demystified at <ahref="https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs" target="_blank"><tt>https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs</tt></a></li>
459
-
</ol>
460
461
<li> Building Neural Networks from scratch at <ahref="https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex" target="_blank"><tt>https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex</tt></a></li>
461
462
<li> Video on Neural Networks at <ahref="https://www.youtube.com/watch?v=CqOfi41LfDw" target="_blank"><tt>https://www.youtube.com/watch?v=CqOfi41LfDw</tt></a></li>
462
463
<li> Video on the back propagation algorithm at <ahref="https://www.youtube.com/watch?v=Ilg3gGewQ5U" target="_blank"><tt>https://www.youtube.com/watch?v=Ilg3gGewQ5U</tt></a></li>
464
+
<li> We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <ahref="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</li>
463
465
</ol>
464
-
<p>We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at <ahref="http://neuralnetworksanddeeplearning.com/chap4.html" target="_blank"><tt>http://neuralnetworksanddeeplearning.com/chap4.html</tt></a>.</p>
465
466
</div>
466
467
467
468
@@ -483,18 +484,17 @@ <h2 id="reminder-on-books-with-hands-on-material-and-codes">Reminder on books wi
<li><ahref="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a></li>
488
-
</ul>
487
+
<ahref="https://sebastianraschka.com/blog/2022/ml-pytorch-book.html" target="_blank">Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch</a>
0 commit comments