|
| 1 | +# import necessary packages |
| 2 | +import numpy as np |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import tensorflow as tf |
| 5 | +from tensorflow.keras.layers import Input |
| 6 | +from tensorflow.keras.models import Sequential #This allows appending layers to existing models |
| 7 | +from tensorflow.keras.layers import Dense #This allows defining the characteristics of a particular layer |
| 8 | +from tensorflow.keras import optimizers #This allows using whichever optimiser we want (sgd,adam,RMSprop) |
| 9 | +from tensorflow.keras import regularizers #This allows using whichever regularizer we want (l1,l2,l1_l2) |
| 10 | +from tensorflow.keras.utils import to_categorical #This allows using categorical cross entropy as the cost function |
| 11 | +from sklearn.model_selection import train_test_split |
| 12 | + |
| 13 | + |
| 14 | +# Define the Runge function |
| 15 | +def runge_function(x): |
| 16 | + return 1 / (1 + 25 * x**2) |
| 17 | + |
| 18 | +# Generate training data |
| 19 | +np.random.seed(0) |
| 20 | +x = np.linspace(-1, 1, 200).reshape(-1, 1) |
| 21 | +y = runge_function(x) |
| 22 | + |
| 23 | +# split into train and test data |
| 24 | +train_size = 0.8 |
| 25 | +test_size = 1 - train_size |
| 26 | +X_train, X_test, Y_train, Y_test = train_test_split(x, y, train_size=train_size,test_size=test_size) |
| 27 | + |
| 28 | +epochs = 1000 |
| 29 | +batch_size = 100 |
| 30 | +n_neurons_layer1 = 128 |
| 31 | +n_neurons_layer2 = 128 |
| 32 | +n_categories = 1 |
| 33 | +eta_vals = np.logspace(-5, 1, 7) |
| 34 | +lmbd_vals = np.logspace(-5, 1, 7) |
| 35 | +def create_neural_network_keras(n_neurons_layer1, n_neurons_layer2, n_categories, eta, lmbd): |
| 36 | + model = Sequential() |
| 37 | + model.add(Dense(n_neurons_layer1, activation='tanh', kernel_regularizer=regularizers.l2(lmbd))) |
| 38 | + model.add(Dense(n_neurons_layer2, activation='tanh', kernel_regularizer=regularizers.l2(lmbd))) |
| 39 | + model.add(Dense(n_categories, activation='linear')) |
| 40 | + sgd = optimizers.SGD(learning_rate=eta) |
| 41 | + model.compile(loss='mse', optimizer=sgd, metrics=['mse']) |
| 42 | + return model |
| 43 | + |
| 44 | +DNN_keras = np.zeros((len(eta_vals), len(lmbd_vals)), dtype=object) |
| 45 | +for i, eta in enumerate(eta_vals): |
| 46 | + for j, lmbd in enumerate(lmbd_vals): |
| 47 | + DNN = create_neural_network_keras(n_neurons_layer1, n_neurons_layer2, n_categories, |
| 48 | + eta=eta, lmbd=lmbd) |
| 49 | + DNN.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=0) |
| 50 | + scores = DNN.evaluate(X_test, Y_test) |
| 51 | + DNN_keras[i][j] = DNN |
| 52 | + print("Learning rate = ", eta) |
| 53 | + print("Lambda = ", lmbd) |
| 54 | + print("Test MSE: %.3f" % scores[1]) |
| 55 | + print() |
| 56 | + |
| 57 | +import seaborn as sns |
| 58 | +sns.set() |
| 59 | +train_accuracy = np.zeros((len(eta_vals), len(lmbd_vals))) |
| 60 | +test_accuracy = np.zeros((len(eta_vals), len(lmbd_vals))) |
| 61 | +for i in range(len(eta_vals)): |
| 62 | + for j in range(len(lmbd_vals)): |
| 63 | + DNN = DNN_keras[i][j] |
| 64 | + train_accuracy[i][j] = DNN.evaluate(X_train, Y_train)[1] |
| 65 | + test_accuracy[i][j] = DNN.evaluate(X_test, Y_test)[1] |
| 66 | +fig, ax = plt.subplots(figsize = (10, 10)) |
| 67 | +sns.heatmap(train_accuracy, annot=True, ax=ax, cmap="viridis") |
| 68 | +ax.set_title("Training Accuracy") |
| 69 | +ax.set_ylabel("$\eta$") |
| 70 | +ax.set_xlabel("$\lambda$") |
| 71 | +plt.show() |
| 72 | + |
| 73 | +fig, ax = plt.subplots(figsize = (10, 10)) |
| 74 | +sns.heatmap(test_accuracy, annot=True, ax=ax, cmap="viridis") |
| 75 | +ax.set_title("Test Accuracy") |
| 76 | +ax.set_ylabel("$\eta$") |
| 77 | +ax.set_xlabel("$\lambda$") |
| 78 | +plt.show() |
| 79 | + |
| 80 | + |
| 81 | + |
0 commit comments